Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
528980099105796019910 ~1999
528981671105796334310 ~1999
528999467423199573710 ~2001
529001411105800282310 ~1999
529021949740630728710 ~2001
5290222519839813868711 ~2004
529029913317417947910 ~2000
529067879105813575910 ~1999
5290833831375616795911 ~2002
529105019105821003910 ~1999
529108319105821663910 ~1999
529149611105829922310 ~1999
529158659105831731910 ~1999
529173311105834662310 ~1999
529174601317504760710 ~2000
529180441846688705710 ~2001
529188371105837674310 ~1999
529193471105838694310 ~1999
529207153317524291910 ~2000
529248983105849796710 ~1999
529270211423416168910 ~2001
529273931105854786310 ~1999
529276343105855268710 ~1999
529285511105857102310 ~1999
529291883105858376710 ~1999
Exponent Prime Factor Digits Year
529316663105863332710 ~1999
529330019105866003910 ~1999
529356479105871295910 ~1999
529362791105872558310 ~1999
529369091105873818310 ~1999
529379633317627779910 ~2000
529394057423515245710 ~2001
529406447423525157710 ~2001
529442579105888515910 ~1999
529446101423556880910 ~2001
529448653317669191910 ~2000
529453103105890620710 ~1999
529463219105892643910 ~1999
529475237317685142310 ~2000
529477919105895583910 ~1999
529493579105898715910 ~1999
529495691105899138310 ~1999
529524181317714508710 ~2000
529530451953154811910 ~2001
529532873317719723910 ~2000
5295394739319894724911 ~2004
529544303105908860710 ~1999
529549763105909952710 ~1999
529594783847351652910 ~2001
529623377423698701710 ~2001
Exponent Prime Factor Digits Year
5296548191271171565711 ~2002
529665061317799036710 ~2000
529673783105934756710 ~1999
529677437317806462310 ~2000
529687703105937540710 ~1999
529720403105944080710 ~1999
5297248731589174619111 ~2002
529749323105949864710 ~1999
529776217317865730310 ~2000
529795691105959138310 ~1999
529795979105959195910 ~1999
529803119105960623910 ~1999
529818119105963623910 ~1999
529819919105963983910 ~1999
529824299105964859910 ~1999
529870823105974164710 ~1999
529871063105974212710 ~1999
529879643105975928710 ~1999
529901699105980339910 ~1999
529923239105984647910 ~1999
529930139105986027910 ~1999
529934159105986831910 ~1999
529937231105987446310 ~1999
529938553317963131910 ~2000
529948691105989738310 ~1999
Exponent Prime Factor Digits Year
529966513317979907910 ~2000
5299708873073831144711 ~2003
529971587423977269710 ~2001
529976987423981589710 ~2001
530005397424004317710 ~2001
530005439106001087910 ~1999
530013593318008155910 ~2000
530013611106002722310 ~1999
530014631106002926310 ~1999
530017931106003586310 ~1999
530045903106009180710 ~1999
530059163106011832710 ~1999
530061179106012235910 ~1999
530072531106014506310 ~1999
530074091106014818310 ~1999
530093647848149835310 ~2001
530107043106021408710 ~1999
530112959106022591910 ~1999
530131631106026326310 ~1999
530152717318091630310 ~2000
5301655492544794635311 ~2003
530188751106037750310 ~1999
530191379106038275910 ~1999
530202313318121387910 ~2000
5302060931590618279111 ~2002
Home
4.724.182 digits
e-mail
25-04-13