Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
540958261324574956710 ~2000
540958811108191762310 ~1999
540964559108192911910 ~1999
541009583108201916710 ~1999
541017637324610582310 ~2000
541022837757431971910 ~2001
541023911108204782310 ~1999
541043543108208708710 ~1999
541058891108211778310 ~1999
541060661432848528910 ~2001
5410627131731400681711 ~2002
541086809432869447310 ~2001
541091279108218255910 ~1999
541092037324655222310 ~2000
541169963108233992710 ~1999
541242679541242679110 ~2001
541251463541251463110 ~2001
5413219316495863172111 ~2004
541324181324794508710 ~2000
541324391108264878310 ~1999
541346941324808164710 ~2000
541347899108269579910 ~1999
541348583108269716710 ~1999
541350791433080632910 ~2001
541351259108270251910 ~1999
Exponent Prime Factor Digits Year
541352183108270436710 ~1999
5413570734655670827911 ~2003
541359503108271900710 ~1999
541361159433088927310 ~2001
541363643108272728710 ~1999
541378811108275762310 ~1999
541390637324834382310 ~2000
541407851108281570310 ~1999
541417403108283480710 ~1999
541420531541420531110 ~2001
541422379541422379110 ~2001
541424711108284942310 ~1999
541440899108288179910 ~1999
541443677324866206310 ~2000
541456033866329652910 ~2001
541462139108292427910 ~1999
541464431433171544910 ~2001
541466501324879900710 ~2000
541470599108294119910 ~1999
541472111108294422310 ~1999
541478699108295739910 ~1999
541479479108295895910 ~1999
541485383108297076710 ~1999
541504739108300947910 ~1999
541511879108302375910 ~1999
Exponent Prime Factor Digits Year
541538363108307672710 ~1999
541538951108307790310 ~1999
541583257324949954310 ~2000
541583411433266728910 ~2001
541585417324951250310 ~2000
541593911108318782310 ~1999
541646951108329390310 ~1999
541658459974985226310 ~2002
541658857324995314310 ~2000
541697297433357837710 ~2001
541727783108345556710 ~1999
541728371108345674310 ~1999
5417395673575481142311 ~2003
541752677325051606310 ~2000
541758011108351602310 ~1999
541768523108353704710 ~1999
541777763108355552710 ~1999
541790423108358084710 ~1999
541810013325086007910 ~2000
541814411108362882310 ~1999
541822331108364466310 ~1999
541844531108368906310 ~1999
541883339108376667910 ~1999
541885709433508567310 ~2001
541909619108381923910 ~1999
Exponent Prime Factor Digits Year
541912103108382420710 ~1999
541914563108382912710 ~1999
541915331108383066310 ~1999
541958617325175170310 ~2000
541993163108398632710 ~1999
542037599108407519910 ~1999
542055203108411040710 ~1999
542078297325246978310 ~2000
542084533867335252910 ~2001
542085857433668685710 ~2001
5420929872168371948111 ~2002
542117483108423496710 ~1999
542118371108423674310 ~1999
542129963108425992710 ~1999
542139431108427886310 ~1999
542179199433743359310 ~2001
542182273325309363910 ~2000
542253191108450638310 ~1999
542257931108451586310 ~1999
542261591108452318310 ~1999
542304601325382760710 ~2000
542362003542362003110 ~2001
542363831108472766310 ~1999
542376431108475286310 ~1999
542379791108475958310 ~1999
Home
4.724.182 digits
e-mail
25-04-13