Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
554227679443382143310 ~2001
554241323110848264710 ~1999
554246963110849392710 ~1999
554249831110849966310 ~1999
554300003110860000710 ~1999
554310391554310391110 ~2001
554318159443454527310 ~2001
554331779110866355910 ~1999
554343343886949348910 ~2001
554345699443476559310 ~2001
554355089443484071310 ~2001
554362079110872415910 ~1999
554364131110872826310 ~1999
554381423110876284710 ~1999
554388893332633335910 ~2000
554399669443519735310 ~2001
554414639110882927910 ~1999
554417543110883508710 ~1999
554435939110887187910 ~1999
554458643110891728710 ~1999
554478299110895659910 ~1999
55449967915636890947912 ~2005
554507423110901484710 ~1999
554535251110907050310 ~1999
5545517413881862187111 ~2003
Exponent Prime Factor Digits Year
554551859110910371910 ~1999
5545543911441841416711 ~2002
55456160325731658379312 ~2005
554568383110913676710 ~1999
554585819110917163910 ~1999
554587199110917439910 ~1999
554629643110925928710 ~1999
554632139110926427910 ~1999
554634667554634667110 ~2001
554644481332786688710 ~2000
554645071554645071110 ~2001
554651759110930351910 ~1999
554664479110932895910 ~1999
554697293332818375910 ~2000
554698643110939728710 ~1999
554744231110948846310 ~1999
5547484018765024735911 ~2004
554762471110952494310 ~1999
554777831110955566310 ~1999
554787143110957428710 ~1999
554823299110964659910 ~1999
554824619110964923910 ~1999
554839151110967830310 ~1999
554882507443906005710 ~2001
554919191110983838310 ~1999
Exponent Prime Factor Digits Year
554927111110985422310 ~1999
554946443110989288710 ~1999
554984819110996963910 ~1999
555006839111001367910 ~1999
555010873333006523910 ~2000
555013031111002606310 ~1999
555036239111007247910 ~1999
555041771111008354310 ~1999
555051239111010247910 ~1999
555062411111012482310 ~1999
555069191111013838310 ~1999
555072671111014534310 ~1999
555075011111015002310 ~1999
555078659111015731910 ~1999
555095291111019058310 ~1999
555098419555098419110 ~2001
555111743111022348710 ~1999
555114779111022955910 ~1999
555122891111024578310 ~1999
555126311111025262310 ~1999
555130931111026186310 ~1999
555136913333082147910 ~2000
5551388699659416320711 ~2004
555174239111034847910 ~1999
555183311111036662310 ~1999
Exponent Prime Factor Digits Year
555198071111039614310 ~1999
555209663111041932710 ~1999
555213299111042659910 ~1999
555237317333142390310 ~2000
555253199111050639910 ~1999
555260159111052031910 ~1999
555273623111054724710 ~1999
5552850971332684232911 ~2002
555295859111059171910 ~1999
555297797444238237710 ~2001
5553053632332282524711 ~2003
555308651111061730310 ~1999
555314407555314407110 ~2001
555315097888504155310 ~2001
555329737333197842310 ~2000
555334861333200916710 ~2000
555388511111077702310 ~1999
555391163111078232710 ~1999
555395119555395119110 ~2001
555404051111080810310 ~1999
555418859111083771910 ~1999
555432539111086507910 ~1999
555437083555437083110 ~2001
555465671111093134310 ~1999
5554676216110143831111 ~2004
Home
4.724.182 digits
e-mail
25-04-13