Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
514921397411937117710 ~2001
514926653308955991910 ~2000
5149279813604495867111 ~2003
514928411102985682310 ~1999
514951583102990316710 ~1999
514970831102994166310 ~1999
514975091102995018310 ~1999
514976963102995392710 ~1999
514980839102996167910 ~1999
514982579102996515910 ~1999
514993331102998666310 ~1999
515028323103005664710 ~1999
515037647412030117710 ~2001
515037923103007584710 ~1999
515047499103009499910 ~1999
515072543103014508710 ~1999
515090483103018096710 ~1999
515094539103018907910 ~1999
515100023103020004710 ~1999
515106479103021295910 ~1999
515129143824206628910 ~2001
515131961412105568910 ~2001
515132879103026575910 ~1999
515138639103027727910 ~1999
515174129412139303310 ~2001
Exponent Prime Factor Digits Year
515191679103038335910 ~1999
515204219103040843910 ~1999
515207471103041494310 ~1999
515213711103042742310 ~1999
515217257721304159910 ~2001
515247731103049546310 ~1999
515254841309152904710 ~2000
515270711103054142310 ~1999
515280119103056023910 ~1999
515282123103056424710 ~1999
515284303824454884910 ~2001
515288771103057754310 ~1999
515290739103058147910 ~1999
515301851103060370310 ~1999
515307677412246141710 ~2001
515309351103061870310 ~1999
515319671103063934310 ~1999
515323379103064675910 ~1999
515323811103064762310 ~1999
515328503103065700710 ~1999
515329831927593695910 ~2001
515339767515339767110 ~2001
515358419103071683910 ~1999
515373143103074628710 ~1999
515374991103074998310 ~1999
Exponent Prime Factor Digits Year
515378713309227227910 ~2000
515379083103075816710 ~1999
515381879103076375910 ~1999
515383499103076699910 ~1999
515409071103081814310 ~1999
515425019103085003910 ~1999
515426783103085356710 ~1999
515431523103086304710 ~1999
515434043103086808710 ~1999
515444771103088954310 ~1999
515450543103090108710 ~1999
515452211103090442310 ~1999
515456171103091234310 ~1999
515471717309283030310 ~2000
5154727731546418319111 ~2002
515473151103094630310 ~1999
515493623103098724710 ~1999
515510543103102108710 ~1999
515512979103102595910 ~1999
515539523103107904710 ~1999
515539649721755508710 ~2001
515550179103110035910 ~1999
515618711103123742310 ~1999
515628383103125676710 ~1999
515637937309382762310 ~2000
Exponent Prime Factor Digits Year
515640371103128074310 ~1999
51565267712685055854312 ~2004
515675177309405106310 ~2000
515694071103138814310 ~1999
515695619103139123910 ~1999
5157088078663907957711 ~2004
515727119103145423910 ~1999
515736527412589221710 ~2001
515758459515758459110 ~2001
515764583103152916710 ~1999
515769203103153840710 ~1999
515771183103154236710 ~1999
515787059103157411910 ~1999
515806871103161374310 ~1999
515811083103162216710 ~1999
515812313309487387910 ~2000
515812463103162492710 ~1999
515815259103163051910 ~1999
515820917309492550310 ~2000
515833151103166630310 ~1999
515837633309502579910 ~2000
515837837722172971910 ~2001
515849219103169843910 ~1999
515849903103169980710 ~1999
515850299103170059910 ~1999
Home
4.843.404 digits
e-mail
25-06-08