Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
531805343106361068710 ~1999
531820199106364039910 ~1999
531822419106364483910 ~1999
531828299106365659910 ~1999
531837263106367452710 ~1999
531843131106368626310 ~1999
531848279106369655910 ~1999
531887879106377575910 ~1999
531895933319137559910 ~2000
531896303106379260710 ~1999
531914237425531389710 ~2001
531927983106385596710 ~1999
531934919106386983910 ~1999
531937883106387576710 ~1999
531950351106390070310 ~1999
531950651106390130310 ~1999
531983051106396610310 ~1999
531983519106396703910 ~1999
531986183106397236710 ~1999
531988559106397711910 ~1999
532000013319200007910 ~2000
532001047957601884710 ~2001
532001999106400399910 ~1999
532011563106402312710 ~1999
532037873319222723910 ~2000
Exponent Prime Factor Digits Year
532042631106408526310 ~1999
532058507425646805710 ~2001
532060871106412174310 ~1999
532064063106412812710 ~1999
532078319425662655310 ~2001
532089191957760543910 ~2001
532097711106419542310 ~1999
532103471106420694310 ~1999
532109471106421894310 ~1999
532117931106423586310 ~1999
532121459106424291910 ~1999
532126499106425299910 ~1999
5321290611702812995311 ~2002
532147439106429487910 ~1999
532151003106430200710 ~1999
532152083106430416710 ~1999
532155443106431088710 ~1999
532157651106431530310 ~1999
5321657571277197816911 ~2002
5321689434789520487111 ~2003
532201931106440386310 ~1999
532236851106447370310 ~1999
532245359106449071910 ~1999
532248779106449755910 ~1999
532264283106452856710 ~1999
Exponent Prime Factor Digits Year
532265663106453132710 ~1999
532267987958082376710 ~2001
532270099958086178310 ~2001
532282823106456564710 ~1999
532301183106460236710 ~1999
532339403106467880710 ~1999
532341839106468367910 ~1999
532343723106468744710 ~1999
532356131106471226310 ~1999
532373999425899199310 ~2001
532390673319434403910 ~2000
532412093319447255910 ~2000
532418423106483684710 ~1999
532423163106484632710 ~1999
532426381851882209710 ~2001
5324279211703769347311 ~2002
532431659958376986310 ~2001
532448783106489756710 ~1999
532449959106489991910 ~1999
532451651106490330310 ~1999
532452467425961973710 ~2001
532471081319482648710 ~2000
532477943106495588710 ~1999
532480891532480891110 ~2001
532487003106497400710 ~1999
Exponent Prime Factor Digits Year
532499699106499939910 ~1999
532507919106501583910 ~1999
5325269992556129595311 ~2003
532543877319526326310 ~2000
532543883106508776710 ~1999
532566971106513394310 ~1999
532570799106514159910 ~1999
5325782291597734687111 ~2002
532590011106518002310 ~1999
532593203106518640710 ~1999
532609211106521842310 ~1999
532628483106525696710 ~1999
532641443106528288710 ~1999
5326416073515434606311 ~2003
532663259106532651910 ~1999
532667167532667167110 ~2001
532671541319602924710 ~2000
532686431106537286310 ~1999
532690397745766555910 ~2001
532692551106538510310 ~1999
532706957319624174310 ~2000
532714811106542962310 ~1999
532719983106543996710 ~1999
532724981426179984910 ~2001
532727399106545479910 ~1999
Home
4.843.404 digits
e-mail
25-06-08