Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
648589439129717887910 ~2000
648595151129719030310 ~2000
648601511129720302310 ~2000
648670703129734140710 ~2000
6486958371556870008911 ~2002
648708701389225220710 ~2001
648739631129747926310 ~2000
648772051648772051110 ~2002
648787343129757468710 ~2000
648793391129758678310 ~2000
648802631129760526310 ~2000
648824831129764966310 ~2000
648832763129766552710 ~2000
648841003648841003110 ~2002
6488583493114520075311 ~2003
648880619129776123910 ~2000
648888899129777779910 ~2000
648894611129778922310 ~2000
648918059129783611910 ~2000
648920231129784046310 ~2000
648924491129784898310 ~2000
648928799519143039310 ~2001
648954739648954739110 ~2002
648970499129794099910 ~2000
648975497389385298310 ~2001
Exponent Prime Factor Digits Year
648989219129797843910 ~2000
648999371129799874310 ~2000
649009451129801890310 ~2000
649092179129818435910 ~2000
649100099129820019910 ~2000
649104359129820871910 ~2000
649116031649116031110 ~2002
649119131519295304910 ~2001
649129991129825998310 ~2000
649148939129829787910 ~2000
649167991649167991110 ~2002
649172653389503591910 ~2001
649213913389528347910 ~2001
649224701389534820710 ~2001
649258523129851704710 ~2000
649285463129857092710 ~2000
649306523129861304710 ~2000
649362179129872435910 ~2000
6493713911038994225711 ~2002
649385903129877180710 ~2000
649394831129878966310 ~2000
649404419129880883910 ~2000
649422671129884534310 ~2000
649422863129884572710 ~2000
649428653909200114310 ~2002
Exponent Prime Factor Digits Year
649440023129888004710 ~2000
649458203129891640710 ~2000
649461623129892324710 ~2000
6494887334156727891311 ~2004
649488971129897794310 ~2000
649495331129899066310 ~2000
649521391649521391110 ~2002
649542251129908450310 ~2000
649542983129908596710 ~2000
6495718331039314932911 ~2002
649576979129915395910 ~2000
649604237389762542310 ~2001
649673041389803824710 ~2001
649708583129941716710 ~2000
649713479129942695910 ~2000
649716703649716703110 ~2002
649732823129946564710 ~2000
649740523649740523110 ~2002
649743443129948688710 ~2000
649771453389862871910 ~2001
649798379129959675910 ~2000
649832693389899615910 ~2001
649836923129967384710 ~2000
64984508312996901660112 ~2005
6498736432729469300711 ~2003
Exponent Prime Factor Digits Year
649875451649875451110 ~2002
649884311129976862310 ~2000
649887493389932495910 ~2001
649890011129978002310 ~2000
649892333389935399910 ~2001
649892423129978484710 ~2000
649929803129985960710 ~2000
649934039129986807910 ~2000
649981511129996302310 ~2000
650014811130002962310 ~2000
650023457390014074310 ~2001
650039303130007860710 ~2000
650041823130008364710 ~2000
650046203130009240710 ~2000
650046443130009288710 ~2000
650050991130010198310 ~2000
650063411130012682310 ~2000
650070143130014028710 ~2000
650070203130014040710 ~2000
650086763130017352710 ~2000
650091863130018372710 ~2000
650094323130018864710 ~2000
650100131130020026310 ~2000
650106179130021235910 ~2000
650108003130021600710 ~2000
Home
4.724.182 digits
e-mail
25-04-13