Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
5748709911034767783911 ~2002
574877137344926282310 ~2001
574891469804848056710 ~2001
5749029711494747724711 ~2002
574932971114986594310 ~1999
574942691114988538310 ~1999
574963967459971173710 ~2001
574966583114993316710 ~1999
575011103115002220710 ~1999
575016131115003226310 ~1999
575036771115007354310 ~1999
575056901345034140710 ~2001
575084231115016846310 ~1999
575090003115018000710 ~1999
5751169812300467924111 ~2003
575119697460095757710 ~2001
575149313805209038310 ~2001
575196119115039223910 ~1999
575207351115041470310 ~1999
575232071115046414310 ~1999
5752322271495603790311 ~2002
575239271115047854310 ~1999
575275997805386395910 ~2001
575280421345168252710 ~2001
575299139115059827910 ~1999
Exponent Prime Factor Digits Year
575308091115061618310 ~1999
575349191115069838310 ~1999
575352443115070488710 ~1999
5753572691380857445711 ~2002
5753772492761810795311 ~2003
575384963115076992710 ~1999
575385659115077131910 ~1999
575385971115077194310 ~1999
575386211115077242310 ~1999
575415947460332757710 ~2001
575422079115084415910 ~1999
575428793345257275910 ~2001
57545053114271173168912 ~2005
575453159115090631910 ~1999
575455421345273252710 ~2001
575459831115091966310 ~1999
575460491115092098310 ~1999
5754642433798064003911 ~2003
575476283115095256710 ~1999
575490313345294187910 ~2001
575501237345300742310 ~2001
575530883115106176710 ~1999
575539291575539291110 ~2001
575549153345329491910 ~2001
575558857345335314310 ~2001
Exponent Prime Factor Digits Year
575569271115113854310 ~1999
575575463115115092710 ~1999
575591897345355138310 ~2001
5755922631841895241711 ~2002
575609711115121942310 ~1999
575617751460494200910 ~2001
575621771115124354310 ~1999
575624963115124992710 ~1999
575628077345376846310 ~2001
575632751115126550310 ~1999
575675351115135070310 ~1999
575678963115135792710 ~1999
575744483115148896710 ~1999
575751899115150379910 ~1999
575785403115157080710 ~1999
575794871115158974310 ~1999
575833619115166723910 ~1999
575842583115168516710 ~1999
5758531491382047557711 ~2002
575912411115182482310 ~1999
5759444291267077743911 ~2002
575959897345575938310 ~2001
575991491115198298310 ~1999
576003143115200628710 ~1999
576019949460815959310 ~2001
Exponent Prime Factor Digits Year
576034883115206976710 ~1999
576044723115208944710 ~1999
576052699576052699110 ~2001
576055643115211128710 ~1999
5760727791036931002311 ~2002
576087583576087583110 ~2001
5760937517489218763111 ~2004
5761094891267440875911 ~2002
5761313634263372086311 ~2003
576131723115226344710 ~1999
576147983115229596710 ~1999
5761517394263522868711 ~2003
576160133345696079910 ~2001
576178859115235771910 ~1999
576181031115236206310 ~1999
576220439115244087910 ~1999
576225059115245011910 ~1999
576233243115246648710 ~1999
576234551115246910310 ~1999
576270143115254028710 ~1999
576320351115264070310 ~1999
576335653345801391910 ~2001
576357539115271507910 ~1999
576358859115271771910 ~1999
576360539115272107910 ~1999
Home
4.843.404 digits
e-mail
25-06-08