Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
578986703115797340710 ~1999
578996927463197541710 ~2001
579013613347408167910 ~2001
579022943115804588710 ~1999
579038231115807646310 ~1999
579052583115810516710 ~1999
579053599579053599110 ~2001
5790582011737174603111 ~2002
5790674711042321447911 ~2002
579074339115814867910 ~1999
579096431115819286310 ~1999
5790988511042377931911 ~2002
579118511115823702310 ~1999
579123791115824758310 ~1999
579182321347509392710 ~2001
579221033347532619910 ~2001
5792423571390181656911 ~2002
579244399579244399110 ~2001
579257951115851590310 ~1999
579263819115852763910 ~1999
579264461347558676710 ~2001
579265619115853123910 ~1999
579301109463440887310 ~2001
579308039463446431310 ~2001
579314231115862846310 ~1999
Exponent Prime Factor Digits Year
5793181211737954363111 ~2002
5793480611274565734311 ~2002
579354731115870946310 ~1999
579363431463490744910 ~2001
579364823115872964710 ~1999
579384853347630911910 ~2001
579404237347642542310 ~2001
579407063115881412710 ~1999
579414743115882948710 ~1999
579419999115883999910 ~1999
579423023115884604710 ~1999
579441683115888336710 ~1999
5794517231970135858311 ~2002
579466259115893251910 ~1999
5794962731390791055311 ~2002
579499163115899832710 ~1999
579535843579535843110 ~2001
579537367579537367110 ~2001
579539483115907896710 ~1999
579549053347729431910 ~2001
5795544492318217796111 ~2003
579565991115913198310 ~1999
579567539115913507910 ~1999
579574199115914839910 ~1999
579574379115914875910 ~1999
Exponent Prime Factor Digits Year
579578423115915684710 ~1999
579587639115917527910 ~1999
579607211115921442310 ~1999
579609929463687943310 ~2001
579613739115922747910 ~1999
579624119115924823910 ~1999
579649523115929904710 ~1999
579649859115929971910 ~1999
579660839115932167910 ~1999
579664859115932971910 ~1999
579685517347811310310 ~2001
579690557347814334310 ~2001
5796938596492571220911 ~2004
579736931115947386310 ~1999
579737531115947506310 ~1999
579752051115950410310 ~1999
579764483115952896710 ~1999
579772691115954538310 ~1999
5797809071043605632711 ~2002
5797970033246863216911 ~2003
579821111115964222310 ~1999
579822011115964402310 ~1999
579920729463936583310 ~2001
579952283115990456710 ~1999
579981323115996264710 ~1999
Exponent Prime Factor Digits Year
579988463115997692710 ~1999
580003007464002405710 ~2001
580014251116002850310 ~1999
580019123116003824710 ~1999
580040647580040647110 ~2001
580080911116016182310 ~1999
580116263116023252710 ~1999
580116479116023295910 ~1999
580121831116024366310 ~1999
580143089464114471310 ~2001
580147783580147783110 ~2001
580177463116035492710 ~1999
580182191116036438310 ~1999
580191263116038252710 ~1999
580217171116043434310 ~1999
580218311116043662310 ~1999
580246619116049323910 ~1999
5802659231392638215311 ~2002
580266779116053355910 ~1999
580291031116058206310 ~1999
5803059377892160743311 ~2004
5803070092785473643311 ~2003
580314191464251352910 ~2001
580317937348190762310 ~2001
580326083116065216710 ~1999
Home
4.843.404 digits
e-mail
25-06-08