Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
749829917599863933710 ~2002
749908297449944978310 ~2001
7499362612849757791911 ~2003
749937803149987560710 ~2000
7499559071199929451311 ~2003
749980697449988418310 ~2001
749988443149997688710 ~2000
749995997449997598310 ~2001
750017711150003542310 ~2000
750019511600015608910 ~2002
7500341336450293543911 ~2004
7500411415850320899911 ~2004
7500426191350076714311 ~2003
750145691150029138310 ~2000
7501573815251101667111 ~2004
750194639150038927910 ~2000
750194891150038978310 ~2000
750232211150046442310 ~2000
750288431600230744910 ~2002
750294959150058991910 ~2000
750332603150066520710 ~2000
750350351150070070310 ~2000
750352871150070574310 ~2000
750361103150072220710 ~2000
750385799150077159910 ~2000
Exponent Prime Factor Digits Year
7503957131800949711311 ~2003
750397079150079415910 ~2000
750422399150084479910 ~2000
750441371150088274310 ~2000
750448397450269038310 ~2001
750503723150100744710 ~2000
750521231150104246310 ~2000
750578639150115727910 ~2000
7505886492251765947111 ~2003
750625559150125111910 ~2000
750627133450376279910 ~2001
750636863150127372710 ~2000
750650639150130127910 ~2000
750652499600521999310 ~2002
7506787816605973272911 ~2004
7506821812252046543111 ~2003
750691231750691231110 ~2002
750692399150138479910 ~2000
750698111150139622310 ~2000
750707939150141587910 ~2000
750717743150143548710 ~2000
7507326671201172267311 ~2003
750746303150149260710 ~2000
750748213450448927910 ~2001
750760331150152066310 ~2000
Exponent Prime Factor Digits Year
750803159150160631910 ~2000
750807919750807919110 ~2002
750809099150161819910 ~2000
750809771150161954310 ~2000
750832031150166406310 ~2000
750895373450537223910 ~2001
750919511150183902310 ~2000
750934139150186827910 ~2000
75094318715769806927112 ~2005
750956603150191320710 ~2000
750966751750966751110 ~2002
750992579150198515910 ~2000
751011323150202264710 ~2000
751032203150206440710 ~2000
751033847600827077710 ~2002
751062863150212572710 ~2000
751073903150214780710 ~2000
751098251150219650310 ~2000
751100099150220019910 ~2000
751142831600914264910 ~2002
751142999150228599910 ~2000
751146911150229382310 ~2000
751153043150230608710 ~2000
751157279150231455910 ~2000
751171139150234227910 ~2000
Exponent Prime Factor Digits Year
751191491150238298310 ~2000
751221071150244214310 ~2000
751251251150250250310 ~2000
751256711150251342310 ~2000
751319287751319287110 ~2002
751343531150268706310 ~2000
751355903150271180710 ~2000
751356383150271276710 ~2000
751414199150282839910 ~2000
751415123150283024710 ~2000
751421843150284368710 ~2000
751433159150286631910 ~2000
751435463150287092710 ~2000
751468499150293699910 ~2000
751482923150296584710 ~2000
751487903150297580710 ~2000
751527071150305414310 ~2000
751528031150305606310 ~2000
751544543150308908710 ~2000
751644479150328895910 ~2000
751645799150329159910 ~2000
751662623150332524710 ~2000
751685003150337000710 ~2000
751725743150345148710 ~2000
751744391150348878310 ~2000
Home
4.724.182 digits
e-mail
25-04-13