Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
814159799162831959910 ~2001
8141965871302714539311 ~2003
814221517488532910310 ~2002
8142259632768368274311 ~2004
814230533488538319910 ~2002
814247279162849455910 ~2001
814261379162852275910 ~2001
814263011162852602310 ~2001
814266143162853228710 ~2001
814298921488579352710 ~2002
814320239162864047910 ~2001
814330813488598487910 ~2002
814332721488599632710 ~2002
814338179162867635910 ~2001
814365983162873196710 ~2001
814374553488624731910 ~2002
814402103162880420710 ~2001
814403519162880703910 ~2001
814414501488648700710 ~2002
814475699162895139910 ~2001
814480643162896128710 ~2001
814481881488689128710 ~2002
814503023162900604710 ~2001
814520797488712478310 ~2002
814520963162904192710 ~2001
Exponent Prime Factor Digits Year
814521971162904394310 ~2001
814525919162905183910 ~2001
814539359162907871910 ~2001
8145488931140368450311 ~2003
814591859162918371910 ~2001
814607471162921494310 ~2001
814613483162922696710 ~2001
814642019162928403910 ~2001
814645439162929087910 ~2001
814660523162932104710 ~2001
814683179162936635910 ~2001
814706051651764840910 ~2002
814709537488825722310 ~2002
814711379162942275910 ~2001
814718819162943763910 ~2001
814749179162949835910 ~2001
814754939162950987910 ~2001
814761373488856823910 ~2002
814763639162952727910 ~2001
814786601488871960710 ~2002
814802039651841631310 ~2002
814805483162961096710 ~2001
814832591162966518310 ~2001
814854119162970823910 ~2001
814876091162975218310 ~2001
Exponent Prime Factor Digits Year
814907783162981556710 ~2001
814912991162982598310 ~2001
814973977488984386310 ~2002
814996631162999326310 ~2001
815014853489008911910 ~2002
815038859163007771910 ~2001
815051191815051191110 ~2002
815056523163011304710 ~2001
8150698971956167752911 ~2003
815101559163020311910 ~2001
815114893489068935910 ~2002
815127119163025423910 ~2001
815187227652149781710 ~2002
815211983163042396710 ~2001
815252723163050544710 ~2001
815304013489182407910 ~2002
815314261489188556710 ~2002
815315771163063154310 ~2001
815337311163067462310 ~2001
8153644573913749393711 ~2004
815370911652296728910 ~2002
815411123163082224710 ~2001
815413799163082759910 ~2001
8154437531304710004911 ~2003
815463059163092611910 ~2001
Exponent Prime Factor Digits Year
815486603163097320710 ~2001
815517611163103522310 ~2001
815528177652422541710 ~2002
815533739163106747910 ~2001
815539643163107928710 ~2001
8155458895871930400911 ~2004
815593763163118752710 ~2001
815598083163119616710 ~2001
815617871163123574310 ~2001
8156188491957485237711 ~2003
815622683163124536710 ~2001
815629583163125916710 ~2001
8156400791468152142311 ~2003
815677853489406711910 ~2002
815691341489414804710 ~2002
815700323163140064710 ~2001
815725193489435115910 ~2002
815728213489436927910 ~2002
815746979163149395910 ~2001
815752153489451291910 ~2002
815759291163151858310 ~2001
815764199163152839910 ~2001
8157861135221031123311 ~2004
8157864672773673987911 ~2004
815815621489489372710 ~2002
Home
4.768.925 digits
e-mail
25-05-04