Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
756662909605330327310 ~2002
756699347605359477710 ~2002
756721859151344371910 ~2000
756724271151344854310 ~2000
756779363151355872710 ~2000
756788237454072942310 ~2002
756788447605430757710 ~2002
756795191151359038310 ~2000
756802667605442133710 ~2002
756837071151367414310 ~2000
756839411151367882310 ~2000
756868103151373620710 ~2000
756891269605513015310 ~2002
756901391151380278310 ~2000
756911591151382318310 ~2000
7569167512422133603311 ~2003
756949859151389971910 ~2000
756951761454171056710 ~2002
7570366491816887957711 ~2003
7570490771211278523311 ~2003
757088303151417660710 ~2000
757117583151423516710 ~2000
757130039151426007910 ~2000
7571446038480019553711 ~2005
757153751151430750310 ~2000
Exponent Prime Factor Digits Year
757192433454315459910 ~2002
75720913753307523244912 ~2007
7572509934089155362311 ~2004
757253039151450607910 ~2000
757268711605814968910 ~2002
757272101454363260710 ~2002
757386517454431910310 ~2002
757412039151482407910 ~2000
757417799151483559910 ~2000
757435571151487114310 ~2000
757462051757462051110 ~2002
757469981454481988710 ~2002
757487651151497530310 ~2000
757491599151498319910 ~2000
757494971151498994310 ~2000
757527791151505558310 ~2000
757540163151508032710 ~2000
757586539757586539110 ~2002
757609679151521935910 ~2000
757649471151529894310 ~2000
757657643151531528710 ~2000
757661741606129392910 ~2002
757689463757689463110 ~2002
7576907511969995952711 ~2003
757691027606152821710 ~2002
Exponent Prime Factor Digits Year
757698661454619196710 ~2002
7577242731060813982311 ~2002
7577257673788628835111 ~2004
757730843151546168710 ~2000
757778741454667244710 ~2002
757785851151557170310 ~2000
757811783151562356710 ~2000
757827557454696534310 ~2002
7578327171818798520911 ~2003
757846151151569230310 ~2000
757846163151569232710 ~2000
757867139151573427910 ~2000
757867931151573586310 ~2000
757903031151580606310 ~2000
75794713929863117276712 ~2006
757965863151593172710 ~2000
757966739151593347910 ~2000
757967381606373904910 ~2002
757975913454785547910 ~2002
7579834095305883863111 ~2004
758001539151600307910 ~2000
758017397606413917710 ~2002
7580220534093319086311 ~2004
758039603151607920710 ~2000
758076637454845982310 ~2002
Exponent Prime Factor Digits Year
758078819151615763910 ~2000
758085323151617064710 ~2000
7581560171819574440911 ~2003
758182559151636511910 ~2000
758183819151636763910 ~2000
758229343758229343110 ~2002
758230477454938286310 ~2002
758240663151648132710 ~2000
7582819192426502140911 ~2003
758299021454979412710 ~2002
758320991151664198310 ~2000
758330291151666058310 ~2000
758339297455003578310 ~2002
758345051151669010310 ~2000
758379131151675826310 ~2000
7583798833033519532111 ~2004
758403539151680707910 ~2000
758448539151689707910 ~2000
758452823151690564710 ~2000
758471891151694378310 ~2000
758487683151697536710 ~2000
758496521455097912710 ~2002
758517491151703498310 ~2000
758545019151709003910 ~2000
7585893233186075156711 ~2004
Home
4.843.404 digits
e-mail
25-06-08