Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
900322079180064415910 ~2001
900366983180073396710 ~2001
900387443180077488710 ~2001
900421079180084215910 ~2001
900430697720344557710 ~2002
900438551180087710310 ~2001
900484943180096988710 ~2001
900500543180100108710 ~2001
900546863180109372710 ~2001
900558293540334975910 ~2002
900561419180112283910 ~2001
900640571180128114310 ~2001
900641783180128356710 ~2001
900651599180130319910 ~2001
900661453540396871910 ~2002
900704159180140831910 ~2001
900785651720628520910 ~2002
900812879180162575910 ~2001
900850631180170126310 ~2001
900860483180172096710 ~2001
900875141540525084710 ~2002
900887051180177410310 ~2001
900942157540565294310 ~2002
900945299180189059910 ~2001
900959723180191944710 ~2001
Exponent Prime Factor Digits Year
900984659180196931910 ~2001
901000403180200080710 ~2001
901011731180202346310 ~2001
901036121540621672710 ~2002
901054433540632659910 ~2002
9010640812883405059311 ~2004
901068023180213604710 ~2001
901078331180215666310 ~2001
901085123180217024710 ~2001
901109459720887567310 ~2002
9011730292883753692911 ~2004
901180271180236054310 ~2001
901192441540715464710 ~2002
901213559180242711910 ~2001
901258223180251644710 ~2001
901268111180253622310 ~2001
901277171180255434310 ~2001
901292081721033664910 ~2002
901298423180259684710 ~2001
901305103901305103110 ~2003
901330931180266186310 ~2001
901344817540806890310 ~2002
901359083180271816710 ~2001
901371323180274264710 ~2001
901403579180280715910 ~2001
Exponent Prime Factor Digits Year
901439663180287932710 ~2001
901472399180294479910 ~2001
901477991180295598310 ~2001
901509431180301886310 ~2001
901513031180302606310 ~2001
901566779180313355910 ~2001
901572323180314464710 ~2001
901598891180319778310 ~2001
901619003180323800710 ~2001
901689143180337828710 ~2001
901696223180339244710 ~2001
901713959180342791910 ~2001
901747013541048207910 ~2002
901764683180352936710 ~2001
9017732393787447603911 ~2004
901782239180356447910 ~2001
901806071180361214310 ~2001
901840991180368198310 ~2001
901842241541105344710 ~2002
901852739180370547910 ~2001
901878973541127383910 ~2002
90189875924531646244912 ~2006
901936391180387278310 ~2001
901937507721550005710 ~2002
901955903180391180710 ~2001
Exponent Prime Factor Digits Year
901968239180393647910 ~2001
902045759180409151910 ~2001
902054137541232482310 ~2002
902065979721652783310 ~2002
902077873541246723910 ~2002
902087647902087647110 ~2003
902103659180420731910 ~2001
902113867902113867110 ~2003
902131199180426239910 ~2001
902144647902144647110 ~2003
902147179902147179110 ~2003
902160503180432100710 ~2001
902163851180432770310 ~2001
902200163180440032710 ~2001
902227643180445528710 ~2001
902246171180449234310 ~2001
902256119180451223910 ~2001
902285117541371070310 ~2002
902291459180458291910 ~2001
902295059721836047310 ~2002
902298781541379268710 ~2002
9023403675955446422311 ~2005
902369291180473858310 ~2001
902374523180474904710 ~2001
902380441541428264710 ~2002
Home
4.724.182 digits
e-mail
25-04-13