Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
930611651186122330310 ~2001
930639253558383551910 ~2002
9306547335025535558311 ~2005
9306736311675212535911 ~2003
930695099186139019910 ~2001
930742643186148528710 ~2001
930752783186150556710 ~2001
930754211186150842310 ~2001
930769943186153988710 ~2001
930773891186154778310 ~2001
930793271186158654310 ~2001
9307994833164718242311 ~2004
9308131012978601923311 ~2004
930818783186163756710 ~2001
930844559186168911910 ~2001
930847139186169427910 ~2001
930855911186171182310 ~2001
9308604172234065000911 ~2004
930909641558545784710 ~2002
930990719186198143910 ~2001
931014107744811285710 ~2003
931047011186209402310 ~2001
931062227744849781710 ~2003
9310778411489724545711 ~2003
9311627411489860385711 ~2003
Exponent Prime Factor Digits Year
931165331186233066310 ~2001
931172579186234515910 ~2001
9311887732234853055311 ~2004
9312002092979840668911 ~2004
9312602232235024535311 ~2004
931312703186262540710 ~2001
931322659931322659110 ~2003
931334303186266860710 ~2001
931355759186271151910 ~2001
93139558744706988176112 ~2007
931421651186284330310 ~2001
9314227871490276459311 ~2003
93150299311178035916112 ~2005
931515911186303182310 ~2001
9315493212049408506311 ~2004
931552403186310480710 ~2001
931566737558940042310 ~2002
9315880393167399332711 ~2004
931596443186319288710 ~2001
931668191186333638310 ~2001
9316836719130499975911 ~2005
931691231186338246310 ~2001
931712759186342551910 ~2001
931719611186343922310 ~2001
931770011186354002310 ~2001
Exponent Prime Factor Digits Year
931857181559114308710 ~2002
931876307745501045710 ~2003
931891799186378359910 ~2001
931910341559146204710 ~2002
931914803186382960710 ~2001
9319230531304692274311 ~2003
931927033559156219910 ~2002
931957319186391463910 ~2001
931962959186392591910 ~2001
931965329745572263310 ~2003
931979843186395968710 ~2001
931989479745591583310 ~2003
932032741559219644710 ~2002
932070803186414160710 ~2001
932196803186439360710 ~2001
932197691186439538310 ~2001
932238563186447712710 ~2001
932266691186453338310 ~2001
932277119186455423910 ~2001
932284823186456964710 ~2001
9323004012796901203111 ~2004
932311823186462364710 ~2001
932378087745902469710 ~2003
932386933559432159910 ~2002
932410937745928749710 ~2003
Exponent Prime Factor Digits Year
932419259186483851910 ~2001
932440319186488063910 ~2001
932469959186493991910 ~2001
932475121559485072710 ~2002
932479109745983287310 ~2003
932496263186499252710 ~2001
932535581559521348710 ~2002
932535817559521490310 ~2002
932536763186507352710 ~2001
932565779746052623310 ~2003
932566091186513218310 ~2001
932575331186515066310 ~2001
9325774693730309876111 ~2004
932594951186518990310 ~2001
932710391186542078310 ~2001
932725823186545164710 ~2001
932737361559642416710 ~2002
9327475932052044704711 ~2004
932771291746217032910 ~2003
932798159186559631910 ~2001
932799743186559948710 ~2001
932888903186577780710 ~2001
932952071186590414310 ~2001
932972879186594575910 ~2001
933006551186601310310 ~2001
Home
4.724.182 digits
e-mail
25-04-13