Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
944313431188862686310 ~2001
944337263188867452710 ~2001
944400887755520709710 ~2003
944440463188888092710 ~2001
944442959188888591910 ~2001
944495963188899192710 ~2001
944543401566726040710 ~2002
944560139188912027910 ~2001
944567171188913434310 ~2001
944570843188914168710 ~2001
944617343188923468710 ~2001
944660663188932132710 ~2001
944694059188938811910 ~2001
944719793566831875910 ~2002
944731559188946311910 ~2001
944742191188948438310 ~2001
944787023188957404710 ~2001
944795101566877060710 ~2002
944814587755851669710 ~2003
944846531188969306310 ~2001
944854499188970899910 ~2001
944883011188976602310 ~2001
944912261566947356710 ~2002
944930951188986190310 ~2001
944957119944957119110 ~2003
Exponent Prime Factor Digits Year
944998331188999666310 ~2001
945010931189002186310 ~2001
945022139189004427910 ~2001
945046079189009215910 ~2001
945063961567038376710 ~2002
945068651189013730310 ~2001
945082981567049788710 ~2002
945100571189020114310 ~2001
9451005893024321884911 ~2004
9451017535103549466311 ~2005
945124913567074947910 ~2002
945132911189026582310 ~2001
945133979189026795910 ~2001
945190391189038078310 ~2001
945211643189042328710 ~2001
94526248911154097370312 ~2005
945264179189052835910 ~2001
945289759945289759110 ~2003
945380651189076130310 ~2001
945423971189084794310 ~2001
945430331189086066310 ~2001
945431699189086339910 ~2001
945438737567263242310 ~2002
945440663189088132710 ~2001
945460331189092066310 ~2001
Exponent Prime Factor Digits Year
945470621756376496910 ~2003
945487619189097523910 ~2001
945526091189105218310 ~2001
945552479189110495910 ~2001
945581513567348907910 ~2002
945703571189140714310 ~2001
945740693567444415910 ~2002
945747851189149570310 ~2001
945772931189154586310 ~2001
945774083189154816710 ~2001
945782639189156527910 ~2001
945785843189157168710 ~2001
945803471189160694310 ~2001
945840011189168002310 ~2001
945840683189168136710 ~2001
945864373567518623910 ~2002
945868823189173764710 ~2001
945894407756715525710 ~2003
945898259189179651910 ~2001
945937753567562651910 ~2002
945950171189190034310 ~2001
945953759189190751910 ~2001
945954623189190924710 ~2001
945958379189191675910 ~2001
9460297972270471512911 ~2004
Exponent Prime Factor Digits Year
946045319189209063910 ~2001
946063199189212639910 ~2001
946066621567639972710 ~2002
9460774271513723883311 ~2003
946101173567660703910 ~2002
946126931189225386310 ~2001
946145371946145371110 ~2003
9461525692270766165711 ~2004
9461853431513896548911 ~2003
946190717756952573710 ~2003
946193201756954560910 ~2003
946224239189244847910 ~2001
946262459189252491910 ~2001
946284851757027880910 ~2003
946321801567793080710 ~2002
946328641567797184710 ~2002
946329731189265946310 ~2001
946385501567831300710 ~2002
946412063189282412710 ~2001
946415699189283139910 ~2001
946513559189302711910 ~2001
946545251189309050310 ~2001
946547951189309590310 ~2001
946586833567952099910 ~2002
946589051189317810310 ~2001
Home
4.724.182 digits
e-mail
25-04-13