Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
998833991199766798310 ~2001
998856623199771324710 ~2001
998870459199774091910 ~2001
998889653599333791910 ~2002
999014603199802920710 ~2001
999049957599429974310 ~2002
999159611199831922310 ~2001
9992031371598725019311 ~2003
999262871199852574310 ~2001
999277121599566272710 ~2002
999365351199873070310 ~2001
999370979199874195910 ~2001
999431183199886236710 ~2001
999438059199887611910 ~2001
999443639199888727910 ~2001
999453503199890700710 ~2001
999500531199900106310 ~2001
999566237799652989710 ~2003
999601679199920335910 ~2001
999609251199921850310 ~2001
9996098332399063599311 ~2004
999658139799726511310 ~2003
999762383199952476710 ~2001
999767591199953518310 ~2001
999774311199954862310 ~2001
Exponent Prime Factor Digits Year
999823579999823579110 ~2003
999832511199966502310 ~2001
999843011199968602310 ~2001
999891611199978322310 ~2001
999924227799939381710 ~2003
1000037099200007419910 ~2001
1000059419200011883910 ~2001
1000069661600041796710 ~2002
1000074371200014874310 ~2001
1000090523200018104710 ~2001
1000093079200018615910 ~2001
1000135079200027015910 ~2001
10001580311000158031111 ~2003
1000168451200033690310 ~2001
1000178609800142887310 ~2003
1000184617600110770310 ~2002
1000198163200039632710 ~2001
1000257491200051498310 ~2001
100033195120006639020112 ~2006
1000404323200080864710 ~2001
1000405583200081116710 ~2001
1000419239200083847910 ~2001
1000438619200087723910 ~2001
1000450151200090030310 ~2001
1000472279200094455910 ~2001
Exponent Prime Factor Digits Year
1000501751200100350310 ~2001
1000508039200101607910 ~2001
1000521479200104295910 ~2001
1000526713600316027910 ~2002
1000546753600328051910 ~2002
10005546778004437416111 ~2005
1000558571200111714310 ~2001
1000608863200121772710 ~2001
1000635197600381118310 ~2002
1000635599200127119910 ~2001
1000663799200132759910 ~2001
10007167678005734136111 ~2005
1000718363200143672710 ~2001
1000730183200146036710 ~2001
1000734659200146931910 ~2001
10007462171601193947311 ~2003
10007528471000752847111 ~2003
1000867319200173463910 ~2001
1000908599200181719910 ~2001
1000918739200183747910 ~2001
1000953677800762941710 ~2003
1000960931800768744910 ~2003
1000974479200194895910 ~2001
10010046911801808443911 ~2004
10010217311001021731111 ~2003
Exponent Prime Factor Digits Year
1001048813600629287910 ~2002
1001054459200210891910 ~2001
1001085311200217062310 ~2001
100114606712814669657712 ~2006
1001173391200234678310 ~2001
1001185931200237186310 ~2001
1001213639200242727910 ~2001
10013296133204254761711 ~2004
1001352323200270464710 ~2001
10014933911001493391111 ~2003
1001494031200298806310 ~2001
10015593232604054239911 ~2004
1001567417600940450310 ~2002
1001568539200313707910 ~2001
10016145891402260424711 ~2003
1001622491200324498310 ~2001
10016268771402277627911 ~2003
10016274116610740912711 ~2005
10016392511001639251111 ~2003
1001640113600984067910 ~2002
1001644103200328820710 ~2001
10016493311802968795911 ~2004
1001692019200338403910 ~2001
1001795243200359048710 ~2001
1001821763200364352710 ~2001
Home
4.724.182 digits
e-mail
25-04-13