Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1035141851207028370310 ~2001
10351560291449218440711 ~2003
1035202991207040598310 ~2001
10352557218074994623911 ~2005
1035274343207054868710 ~2001
1035278063207055612710 ~2001
1035285539207057107910 ~2001
1035298763207059752710 ~2001
1035305147828244117710 ~2003
1035314711207062942310 ~2001
1035318881621191328710 ~2003
1035320879207064175910 ~2001
1035327011207065402310 ~2001
1035328841828263072910 ~2003
1035361427828289141710 ~2003
1035407201621244320710 ~2003
10354122832484989479311 ~2004
1035438923207087784710 ~2001
1035440039207088007910 ~2001
1035454613621272767910 ~2003
1035523799207104759910 ~2001
1035527219207105443910 ~2001
1035676403207135280710 ~2001
10356824897249777423111 ~2005
1035747599207149519910 ~2001
Exponent Prime Factor Digits Year
1035768143207153628710 ~2001
1035792203207158440710 ~2001
1035813419207162683910 ~2001
1035818123207163624710 ~2001
10358274772485985944911 ~2004
1035869291207173858310 ~2001
10359129891450278184711 ~2003
1035927911207185582310 ~2001
1035940571207188114310 ~2001
1035981959207196391910 ~2001
1035994343207198868710 ~2001
1036055957621633574310 ~2003
1036059161828847328910 ~2003
1036095551207219110310 ~2001
10361775893937474838311 ~2005
1036189577621713746310 ~2003
1036210463207242092710 ~2001
1036227011207245402310 ~2001
1036311359207262271910 ~2001
1036333223207266644710 ~2001
10363868512694605812711 ~2004
1036407731207281546310 ~2001
10364230814145692324111 ~2005
1036440959207288191910 ~2001
1036446611207289322310 ~2001
Exponent Prime Factor Digits Year
1036447271207289454310 ~2001
1036479071207295814310 ~2001
1036488851207297770310 ~2001
1036489271207297854310 ~2001
1036516199207303239910 ~2001
10365719716012117431911 ~2005
10365904631658544740911 ~2004
1036671491207334298310 ~2001
1036702091207340418310 ~2001
1036707781622024668710 ~2003
1036721461622032876710 ~2003
1036726037622035622310 ~2003
1036908371207381674310 ~2001
1036910621622146372710 ~2003
1036915079207383015910 ~2001
1036933883207386776710 ~2001
1036942619207388523910 ~2001
1036953383207390676710 ~2001
1036964723207392944710 ~2001
1036966583207393316710 ~2001
1037063627829650901710 ~2003
1037067959207413591910 ~2001
1037074631207414926310 ~2001
1037094791207418958310 ~2001
1037121277622272766310 ~2003
Exponent Prime Factor Digits Year
1037153291207430658310 ~2001
1037160479207432095910 ~2001
1037224379207444875910 ~2001
1037225243207445048710 ~2001
1037238011207447602310 ~2001
1037256431207451286310 ~2001
1037265791207453158310 ~2001
1037317091207463418310 ~2001
1037324557622394734310 ~2003
1037403959207480791910 ~2001
1037513957830011165710 ~2003
10375340515810190685711 ~2005
10375687991037568799111 ~2003
1037572801622543680710 ~2003
1037601479207520295910 ~2001
1037615617622569370310 ~2003
1037619911207523982310 ~2001
1037635199207527039910 ~2001
1037661431207532286310 ~2001
1037666243207533248710 ~2001
1037743229830194583310 ~2003
1037752043207550408710 ~2001
1037805971207561194310 ~2001
1037812799207562559910 ~2001
1037840663207568132710 ~2001
Home
4.724.182 digits
e-mail
25-04-13