Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1042799843208559968710 ~2001
1042809479208561895910 ~2001
1042814939208562987910 ~2001
1042830863208566172710 ~2001
1042895591834316472910 ~2003
1042903613625742167910 ~2003
1042910699208582139910 ~2001
1042917371208583474310 ~2001
10429805414797710488711 ~2005
1042991759208598351910 ~2001
1043008943208601788710 ~2001
1043025299208605059910 ~2001
1043047091208609418310 ~2001
1043085623208617124710 ~2001
1043139899208627979910 ~2001
1043149697625889818310 ~2003
1043163599834530879310 ~2003
1043184071208636814310 ~2001
1043189057834551245710 ~2003
1043201459208640291910 ~2001
1043267111208653422310 ~2001
10432709514381737994311 ~2005
1043336057834668845710 ~2003
1043339789834671831310 ~2003
10433413733130024119111 ~2004
Exponent Prime Factor Digits Year
1043376599208675319910 ~2001
1043487517626092510310 ~2003
1043503523208700704710 ~2001
1043532569834826055310 ~2003
1043579111208715822310 ~2001
1043593223208718644710 ~2001
1043597183208719436710 ~2001
1043659439208731887910 ~2001
1043662883208732576710 ~2001
1043691443208738288710 ~2001
1043714123208742824710 ~2001
1043724611208744922310 ~2001
1043758811208751762310 ~2001
1043769641626261784710 ~2003
1043793323208758664710 ~2001
1043800151208760030310 ~2001
10438522971461393215911 ~2003
1043935559208787111910 ~2001
1043979977626387986310 ~2003
1043996351208799270310 ~2001
1044016511208803302310 ~2001
1044037691208807538310 ~2001
10440408431044040843111 ~2003
1044043333626425999910 ~2003
1044165803208833160710 ~2001
Exponent Prime Factor Digits Year
1044193259208838651910 ~2001
1044212303208842460710 ~2001
10442905914386020482311 ~2005
1044394979208878995910 ~2001
1044431681626659008710 ~2003
1044439559208887911910 ~2001
1044467351208893470310 ~2001
1044506663208901332710 ~2001
1044536477835629181710 ~2003
1044562061626737236710 ~2003
1044594539208918907910 ~2001
1044673379208934675910 ~2001
1044769991208953998310 ~2001
1044786311208957262310 ~2001
1044796163208959232710 ~2001
1044888253626932951910 ~2003
1044893303208978660710 ~2001
1044955403208991080710 ~2001
1044958619208991723910 ~2001
1044969899208993979910 ~2001
1045018979209003795910 ~2001
10450707791045070779111 ~2003
1045118603209023720710 ~2001
1045138079209027615910 ~2001
1045141931209028386310 ~2001
Exponent Prime Factor Digits Year
1045143923209028784710 ~2001
1045168343209033668710 ~2001
1045238879209047775910 ~2001
10452487031672397924911 ~2004
1045341599836273279310 ~2003
1045364057627218434310 ~2003
1045378571209075714310 ~2001
1045536071209107214310 ~2001
1045544963209108992710 ~2001
10455518532300214076711 ~2004
1045556951209111390310 ~2001
1045578791209115758310 ~2001
1045615253627369151910 ~2003
1045642991209128598310 ~2001
1045690313627414187910 ~2003
1045693619209138723910 ~2001
1045707623209141524710 ~2001
1045756199209151239910 ~2001
1045763123209152624710 ~2001
10457883072509891936911 ~2004
1045843439209168687910 ~2001
1045862591209172518310 ~2001
1045904063209180812710 ~2001
1045930133627558079910 ~2003
1045958579209191715910 ~2001
Home
4.724.182 digits
e-mail
25-04-13