Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
9011730292883753692911 ~2004
901180271180236054310 ~2001
901192441540715464710 ~2002
901213559180242711910 ~2001
901258223180251644710 ~2001
901268111180253622310 ~2001
9012742871622293716711 ~2003
901277171180255434310 ~2001
901292081721033664910 ~2002
901298423180259684710 ~2001
901305103901305103110 ~2003
901330931180266186310 ~2001
901344817540806890310 ~2002
901359083180271816710 ~2001
901371323180274264710 ~2001
901403579180280715910 ~2001
901439663180287932710 ~2001
901472399180294479910 ~2001
901477991180295598310 ~2001
901509431180301886310 ~2001
901513031180302606310 ~2001
901566779180313355910 ~2001
901572323180314464710 ~2001
901598891180319778310 ~2001
901619003180323800710 ~2001
Exponent Prime Factor Digits Year
901689143180337828710 ~2001
901696223180339244710 ~2001
901713959180342791910 ~2001
901747013541048207910 ~2002
901764683180352936710 ~2001
9017732393787447603911 ~2004
901782239180356447910 ~2001
901806071180361214310 ~2001
901840991180368198310 ~2001
901842241541105344710 ~2002
901852739180370547910 ~2001
901878973541127383910 ~2002
90189875924531646244912 ~2006
901936391180387278310 ~2001
901937507721550005710 ~2002
901955903180391180710 ~2001
901963297541177978310 ~2002
901968239180393647910 ~2001
902045759180409151910 ~2001
902054137541232482310 ~2002
902065979721652783310 ~2002
902069183180413836710 ~2001
902077873541246723910 ~2002
902087647902087647110 ~2003
902103659180420731910 ~2001
Exponent Prime Factor Digits Year
902113867902113867110 ~2003
902131199180426239910 ~2001
902144647902144647110 ~2003
902147179902147179110 ~2003
902160503180432100710 ~2001
902163851180432770310 ~2001
902200163180440032710 ~2001
902227643180445528710 ~2001
902246171180449234310 ~2001
902256119180451223910 ~2001
902285117541371070310 ~2002
902291459180458291910 ~2001
902295059721836047310 ~2002
902298781541379268710 ~2002
9023403675955446422311 ~2005
902369291180473858310 ~2001
902374523180474904710 ~2001
902380441541428264710 ~2002
902424749721939799310 ~2002
902435483180487096710 ~2001
902454023180490804710 ~2001
902483297721986637710 ~2002
90249517746749250168712 ~2007
902498543180499708710 ~2001
902508251180501650310 ~2001
Exponent Prime Factor Digits Year
902526623180505324710 ~2001
902531137541518682310 ~2002
902548403180509680710 ~2001
902557919180511583910 ~2001
902561903180512380710 ~2001
902615039180523007910 ~2001
902645221541587132710 ~2002
902683751180536750310 ~2001
902703359180540671910 ~2001
902708039180541607910 ~2001
902750603180550120710 ~2001
902769521541661712710 ~2002
902825039180565007910 ~2001
902831543180566308710 ~2001
902833979180566795910 ~2001
902892377541735426310 ~2002
902909699180581939910 ~2001
902913659180582731910 ~2001
903015791180603158310 ~2001
903031931180606386310 ~2001
9030534911625496283911 ~2003
903071579180614315910 ~2001
903080741541848444710 ~2002
903093083180618616710 ~2001
903096611180619322310 ~2001
Home
4.858.378 digits
e-mail
25-06-15