Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1153426679230685335910 ~2002
1153450163230690032710 ~2002
11534606531845537044911 ~2004
1153539923230707984710 ~2002
1153569779230713955910 ~2002
1153584119230716823910 ~2002
1153600991230720198310 ~2002
1153651277922921021710 ~2003
1153707593692224555910 ~2003
1153710697692226418310 ~2003
1153776419230755283910 ~2002
1153782863230756572710 ~2002
1153798813692279287910 ~2003
1153808699230761739910 ~2002
11538283932769188143311 ~2004
1153847459230769491910 ~2002
1153849427923079541710 ~2003
1153866541692319924710 ~2003
1153874783230774956710 ~2002
1153875743230775148710 ~2002
1153905059230781011910 ~2002
1153915151230783030310 ~2002
1153957991230791598310 ~2002
1153962479230792495910 ~2002
11539625831153962583111 ~2003
Exponent Prime Factor Digits Year
1154005997692403598310 ~2003
1154040011230808002310 ~2002
11540511532769722767311 ~2004
1154208101692524860710 ~2003
1154286853692572111910 ~2003
1154353199230870639910 ~2002
1154357531230871506310 ~2002
11543840892770521813711 ~2004
11544002111847040337711 ~2004
11544063492770575237711 ~2004
1154482319230896463910 ~2002
11544951012539889222311 ~2004
1154508119230901623910 ~2002
1154542271923633816910 ~2003
11545586094387322714311 ~2005
1154582111230916422310 ~2002
1154593883230918776710 ~2002
1154600423230920084710 ~2002
1154639543230927908710 ~2002
1154656121692793672710 ~2003
1154672663230934532710 ~2002
1154785871230957174310 ~2002
1154791271230958254310 ~2002
1154832443230966488710 ~2002
1154837441923869952910 ~2003
Exponent Prime Factor Digits Year
1154842043230968408710 ~2002
1154898341692939004710 ~2003
1154921699230984339910 ~2002
1155036251231007250310 ~2002
1155036479231007295910 ~2002
1155054161924043328910 ~2003
1155057131231011426310 ~2002
1155062819231012563910 ~2002
1155065783231013156710 ~2002
1155078971231015794310 ~2002
1155120023231024004710 ~2002
1155144383231028876710 ~2002
1155152333693091399910 ~2003
1155161291231032258310 ~2002
1155165839231033167910 ~2002
1155168923231033784710 ~2002
1155171323231034264710 ~2002
1155272603231054520710 ~2002
1155303959231060791910 ~2002
1155328451231065690310 ~2002
1155347723231069544710 ~2002
1155395357693237214310 ~2003
1155429133693257479910 ~2003
1155438023231087604710 ~2002
1155464039231092807910 ~2002
Exponent Prime Factor Digits Year
11554818072079867252711 ~2004
1155513539231102707910 ~2002
11555206031155520603111 ~2003
1155538199231107639910 ~2002
1155613681693368208710 ~2003
1155620933693372559910 ~2003
1155635111231127022310 ~2002
1155664931231132986310 ~2002
1155690743231138148710 ~2002
1155714299231142859910 ~2002
115575983314562573895912 ~2006
1155774239231154847910 ~2002
1155805523231161104710 ~2002
1155875771231175154310 ~2002
1155911891231182378310 ~2002
1155997343231199468710 ~2002
115600818719420937541712 ~2006
1156015463231203092710 ~2002
1156040663231208132710 ~2002
11560531271156053127111 ~2003
1156125983231225196710 ~2002
1156147337693688402310 ~2003
1156155659231231131910 ~2002
11561819414624727764111 ~2005
1156183811231236762310 ~2002
Home
4.724.182 digits
e-mail
25-04-13