Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
914336903182867380710 ~2001
914365259731492207310 ~2002
914437003914437003110 ~2003
914460479182892095910 ~2001
914461871182892374310 ~2001
914468531182893706310 ~2001
914469299182893859910 ~2001
914501579182900315910 ~2001
914528291182905658310 ~2001
9145302132011966468711 ~2004
914534267731627413710 ~2002
914544479182908895910 ~2001
914564603182912920710 ~2001
914574263182914852710 ~2001
914574383182914876710 ~2001
914575631182915126310 ~2001
9145907111646263279911 ~2003
9146080391646294470311 ~2003
914613671182922734310 ~2001
914715337548829202310 ~2002
914739491182947898310 ~2001
914764451182952890310 ~2001
9147645732012482060711 ~2004
914777663182955532710 ~2001
914814779182962955910 ~2001
Exponent Prime Factor Digits Year
9148411131280777558311 ~2003
914849843182969968710 ~2001
914864999182972999910 ~2001
914871599182974319910 ~2001
9149191012744757303111 ~2004
914932253548959351910 ~2002
914993483182998696710 ~2001
915054323183010864710 ~2001
915067931183013586310 ~2001
915125663183025132710 ~2001
915127319183025463910 ~2001
915135191183027038310 ~2001
915159611183031922310 ~2001
915171359183034271910 ~2001
915174971183034994310 ~2001
9151897633660759052111 ~2004
915194543183038908710 ~2001
915209101549125460710 ~2002
915240239183048047910 ~2001
9152473132196593551311 ~2004
915283253549169951910 ~2002
915324539732259631310 ~2002
915350147732280117710 ~2002
915365543183073108710 ~2001
915389399183077879910 ~2001
Exponent Prime Factor Digits Year
915408779183081755910 ~2001
915437903183087580710 ~2001
91548661961520700796912 ~2007
915503399183100679910 ~2001
915526091183105218310 ~2001
915531059183106211910 ~2001
9155573692197337685711 ~2004
915593219183118643910 ~2001
915595283183119056710 ~2001
915606203183121240710 ~2001
915654359183130871910 ~2001
915662357732529885710 ~2002
9156814792197635549711 ~2004
915681719183136343910 ~2001
915714539183142907910 ~2001
915743051183148610310 ~2001
915758111183151622310 ~2001
915761039183152207910 ~2001
915761837549457102310 ~2002
915775829732620663310 ~2002
915788063183157612710 ~2001
915790703183158140710 ~2001
915799331183159866310 ~2001
915801661549480996710 ~2002
915831577549498946310 ~2002
Exponent Prime Factor Digits Year
915836951183167390310 ~2001
915837317549502390310 ~2002
915860201732688160910 ~2002
915861767732689413710 ~2002
915881363183176272710 ~2001
915887183183177436710 ~2001
915896801732717440910 ~2002
915946523183189304710 ~2001
915959351183191870310 ~2001
915978971183195794310 ~2001
915980363183196072710 ~2001
916046531183209306310 ~2001
916109543183221908710 ~2001
916121819183224363910 ~2001
9161446571465831451311 ~2003
9161623074397579073711 ~2004
916186223183237244710 ~2001
916207199183241439910 ~2001
916230671183246134310 ~2001
916249199183249839910 ~2001
916251419183250283910 ~2001
916265879183253175910 ~2001
916278263183255652710 ~2001
916304579183260915910 ~2001
916318693549791215910 ~2002
Home
4.933.056 digits
e-mail
25-07-20