Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1041238739208247747910 ~2001
1041247463208249492710 ~2001
1041261251208252250310 ~2001
1041283403208256680710 ~2001
1041299279208259855910 ~2001
1041307691208261538310 ~2001
1041308783208261756710 ~2001
1041349031208269806310 ~2001
1041375431208275086310 ~2001
1041376331208275266310 ~2001
1041396491208279298310 ~2001
1041409139208281827910 ~2001
10414140012291110802311 ~2004
1041441671208288334310 ~2001
1041457271208291454310 ~2001
1041550799208310159910 ~2001
1041573191208314638310 ~2001
10415741091458203752711 ~2003
1041592319208318463910 ~2001
1041593437624956062310 ~2003
1041631163208326232710 ~2001
1041634393624980635910 ~2003
1041684491208336898310 ~2001
1041686183208337236710 ~2001
1041710531208342106310 ~2001
Exponent Prime Factor Digits Year
1041725423208345084710 ~2001
10417498991041749899111 ~2003
1041761597625056958310 ~2003
1041797219208359443910 ~2001
1041815363208363072710 ~2001
1041839411208367882310 ~2001
1041844211208368842310 ~2001
1041903983208380796710 ~2001
1041927791208385558310 ~2001
1041936023208387204710 ~2001
10419446111041944611111 ~2003
1041996743208399348710 ~2001
1042019183208403836710 ~2001
1042040999208408199910 ~2001
1042041839208408367910 ~2001
1042044719208408943910 ~2001
1042061987833649589710 ~2003
1042067303208413460710 ~2001
1042072259208414451910 ~2001
1042085831833668664910 ~2003
1042184723208436944710 ~2001
1042193819208438763910 ~2001
1042265891208453178310 ~2001
1042299743208459948710 ~2001
1042300331208460066310 ~2001
Exponent Prime Factor Digits Year
1042353839208470767910 ~2001
1042416359208483271910 ~2001
1042442341625465404710 ~2003
1042457501833966000910 ~2003
1042463711208492742310 ~2001
1042479433625487659910 ~2003
10424912091459487692711 ~2003
1042503131208500626310 ~2001
10425110831042511083111 ~2003
1042512239208502447910 ~2001
1042526879208505375910 ~2001
10425382972502091912911 ~2004
1042540217625524130310 ~2003
1042542659208508531910 ~2001
1042572983208514596710 ~2001
1042579199208515839910 ~2001
1042594739208518947910 ~2001
1042676279208535255910 ~2001
1042688833625613299910 ~2003
1042757603208551520710 ~2001
1042799843208559968710 ~2001
1042809479208561895910 ~2001
1042814939208562987910 ~2001
1042830863208566172710 ~2001
1042895591834316472910 ~2003
Exponent Prime Factor Digits Year
1042903613625742167910 ~2003
1042910699208582139910 ~2001
1042917371208583474310 ~2001
10429805414797710488711 ~2005
1042991759208598351910 ~2001
1043008943208601788710 ~2001
1043025299208605059910 ~2001
1043047091208609418310 ~2001
1043085623208617124710 ~2001
1043139899208627979910 ~2001
1043149697625889818310 ~2003
1043163599834530879310 ~2003
1043184071208636814310 ~2001
1043189057834551245710 ~2003
1043201459208640291910 ~2001
1043267111208653422310 ~2001
10432709514381737994311 ~2005
1043336057834668845710 ~2003
1043339789834671831310 ~2003
10433413733130024119111 ~2004
1043376599208675319910 ~2001
1043410013626046007910 ~2003
1043503523208700704710 ~2001
1043532569834826055310 ~2003
1043579111208715822310 ~2001
Home
4.843.404 digits
e-mail
25-06-08