Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
139017733727803546740112 ~2007
1390192103278038420710 ~2002
1390196903278039380710 ~2002
1390270943278054188710 ~2002
1390315763278063152710 ~2002
1390324163278064832710 ~2002
13904996091946699452711 ~2004
13905077391112406191311 ~2004
1390519283278103856710 ~2002
1390539971278107994310 ~2002
1390542551278108510310 ~2002
13905623091946787232711 ~2004
1390651499278130299910 ~2002
1390653311278130662310 ~2002
1390675991278135198310 ~2002
1390688531278137706310 ~2002
1390712243278142448710 ~2002
1390715783278143156710 ~2002
1390820597834492358310 ~2004
1390880591278176118310 ~2002
1390931303278186260710 ~2002
13909413711112753096911 ~2004
139096484310014946869712 ~2006
1390987751278197550310 ~2002
1391035511278207102310 ~2002
Exponent Prime Factor Digits Year
1391115263278223052710 ~2002
1391117363278223472710 ~2002
1391168279278233655910 ~2002
1391267771278253554310 ~2002
1391303759278260751910 ~2002
1391315483278263096710 ~2002
1391337131278267426310 ~2002
1391340971278268194310 ~2002
13913535411113082832911 ~2004
1391355481834813288710 ~2004
1391364659278272931910 ~2002
1391372639278274527910 ~2002
1391412479278282495910 ~2002
13914567711113165416911 ~2004
1391464463278292892710 ~2002
1391475251278295050310 ~2002
1391486339278297267910 ~2002
139150665119202791783912 ~2007
1391528423278305684710 ~2002
1391537963278307592710 ~2002
1391557439278311487910 ~2002
1391562743278312548710 ~2002
1391631863278326372710 ~2002
1391658491278331698310 ~2002
1391691683278338336710 ~2002
Exponent Prime Factor Digits Year
1391705713835023427910 ~2004
1391730037835038022310 ~2004
13917815697515620472711 ~2006
1391839331278367866310 ~2002
1391882603278376520710 ~2002
1391992139278398427910 ~2002
13920053571113604285711 ~2004
1392028223278405644710 ~2002
1392137819278427563910 ~2002
1392141119278428223910 ~2002
1392184897835310938310 ~2004
1392195743278439148710 ~2002
1392220391278444078310 ~2002
13922337016682721764911 ~2006
1392251219278450243910 ~2002
1392267013835360207910 ~2004
1392306599278461319910 ~2002
1392323759278464751910 ~2002
1392377951278475590310 ~2002
1392409439278481887910 ~2002
1392424331278484866310 ~2002
1392446579278489315910 ~2002
13925198471392519847111 ~2004
1392559631278511926310 ~2002
139258795129244346971112 ~2007
Exponent Prime Factor Digits Year
13926250195849025079911 ~2006
1392650821835590492710 ~2004
1392707819278541563910 ~2002
1392710999278542199910 ~2002
1392778391278555678310 ~2002
1392808031278561606310 ~2002
13928244791392824479111 ~2004
1392859463278571892710 ~2002
1392990359278598071910 ~2002
1393050359278610071910 ~2002
1393054391278610878310 ~2002
13931116191114489295311 ~2004
1393133723278626744710 ~2002
1393144751278628950310 ~2002
1393149731278629946310 ~2002
1393153523278630704710 ~2002
1393244243278648848710 ~2002
1393255631278651126310 ~2002
1393325033835995019910 ~2004
1393378097836026858310 ~2004
1393394461836036676710 ~2004
13934041191114723295311 ~2004
1393497977836098786310 ~2004
1393589831278717966310 ~2002
1393591319278718263910 ~2002
Home
4.724.182 digits
e-mail
25-04-13