Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
14438074573465137896911 ~2005
14438200872598876156711 ~2005
1443857153866314291910 ~2004
1443947137866368282310 ~2004
14439727911155178232911 ~2004
14439823392599168210311 ~2005
1444004651288800930310 ~2003
14440047411155203792911 ~2004
1444074011288814802310 ~2003
1444227923288845584710 ~2003
1444230839288846167910 ~2003
1444242623288848524710 ~2003
1444294079288858815910 ~2003
1444305683288861136710 ~2003
1444330757866598454310 ~2004
1444343291288868658310 ~2003
1444413197866647918310 ~2004
1444496951288899390310 ~2003
1444523891288904778310 ~2003
1444526399288905279910 ~2003
14445390591155631247311 ~2004
1444549871288909974310 ~2003
14445810671444581067111 ~2004
1444592531288918506310 ~2003
14446164892022463084711 ~2005
Exponent Prime Factor Digits Year
14446402791155712223311 ~2004
1444696837866818102310 ~2004
14447220111155777608911 ~2004
1444830251288966050310 ~2003
1445018339289003667910 ~2003
1445092151289018430310 ~2003
1445094251289018850310 ~2003
1445112719289022543910 ~2003
1445192123289038424710 ~2003
1445193803289038760710 ~2003
14452007511156160600911 ~2004
1445285519289057103910 ~2003
1445333699289066739910 ~2003
14454015471156321237711 ~2004
14454570071445457007111 ~2004
1445461331289092266310 ~2003
1445484311289096862310 ~2003
1445489701867293820710 ~2004
1445548463289109692710 ~2003
14455501871445550187111 ~2004
1445559737867335842310 ~2004
1445614343289122868710 ~2003
1445672681867403608710 ~2004
1445697899289139579910 ~2003
1445783039289156607910 ~2003
Exponent Prime Factor Digits Year
1445900231289180046310 ~2003
14459080272313452843311 ~2005
1445916443289183288710 ~2003
1446012779289202555910 ~2003
1446032543289206508710 ~2003
1446083459289216691910 ~2003
1446102683289220536710 ~2003
1446121151289224230310 ~2003
1446153853867692311910 ~2004
1446165719289233143910 ~2003
1446229133867737479910 ~2004
1446233363289246672710 ~2003
14462359611156988768911 ~2004
1446280691289256138310 ~2003
1446343043289268608710 ~2003
14464202472314272395311 ~2005
1446454343289290868710 ~2003
1446471479289294295910 ~2003
1446545797867927478310 ~2004
1446636419289327283910 ~2003
1446677231289335446310 ~2003
1446733733868040239910 ~2004
1446743939289348787910 ~2003
1446755423289351084710 ~2003
1446830771289366154310 ~2003
Exponent Prime Factor Digits Year
1446832703289366540710 ~2003
1446857843289371568710 ~2003
1446880559289376111910 ~2003
14468850198391933110311 ~2006
1446961391289392278310 ~2003
14471106171157688493711 ~2004
1447151063289430212710 ~2003
1447175399289435079910 ~2003
1447204463289440892710 ~2003
14472734231447273423111 ~2004
1447273799289454759910 ~2003
14473401311447340131111 ~2004
14474064312315850289711 ~2005
1447427963289485592710 ~2003
14474835191447483519111 ~2004
1447485971289497194310 ~2003
14474996391157999711311 ~2004
1447532939289506587910 ~2003
14475783671447578367111 ~2004
1447621313868572787910 ~2004
14477171571158173725711 ~2004
1447845683289569136710 ~2003
1447860371289572074310 ~2003
14479460991158356879311 ~2004
1448071753868843051910 ~2004
Home
4.724.182 digits
e-mail
25-04-13