Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1210163291242032658310 ~2002
12101894711210189471111 ~2004
1210190519242038103910 ~2002
1210262639242052527910 ~2002
1210267703242053540710 ~2002
12102791411936446625711 ~2004
1210349669968279735310 ~2003
12103699692904887925711 ~2005
1210408769968327015310 ~2003
1210426583242085316710 ~2002
1210457459968365967310 ~2003
1210486631242097326310 ~2002
12105078072905218736911 ~2005
1210535159242107031910 ~2002
1210569803242113960710 ~2002
1210590779242118155910 ~2002
1210600757968480605710 ~2003
1210630753726378451910 ~2003
1210682003242136400710 ~2002
1210683983242136796710 ~2002
1210700999242140199910 ~2002
1210761911242152382310 ~2002
1210773023242154604710 ~2002
12107859492663729087911 ~2004
1210795499242159099910 ~2002
Exponent Prime Factor Digits Year
1210795517968636413710 ~2003
12108554396054277195111 ~2005
1210909859968727887310 ~2003
1210919657726551794310 ~2003
1210935839242187167910 ~2002
1211064779242212955910 ~2002
1211098991242219798310 ~2002
1211112251242222450310 ~2002
1211126783242225356710 ~2002
1211129603242225920710 ~2002
1211183339242236667910 ~2002
1211239079242247815910 ~2002
1211251271242250254310 ~2002
1211260751242252150310 ~2002
1211334361726800616710 ~2003
1211385341726831204710 ~2003
1211450879242290175910 ~2002
12114527272180614908711 ~2004
12115224911211522491111 ~2004
12115296291696141480711 ~2004
1211541059242308211910 ~2002
1211571737726943042310 ~2003
1211601137726960682310 ~2003
1211633243242326648710 ~2002
1211675099969340079310 ~2003
Exponent Prime Factor Digits Year
1211712233727027339910 ~2003
1211726303242345260710 ~2002
1211745971242349194310 ~2002
1211775371242355074310 ~2002
1211815151242363030310 ~2002
1211824571242364914310 ~2002
1211864561969491648910 ~2003
12119626994120673176711 ~2005
1212038939242407787910 ~2002
1212040631242408126310 ~2002
12120943072909026336911 ~2005
1212150119242430023910 ~2002
1212154871242430974310 ~2002
1212168719242433743910 ~2002
12121982571697077559911 ~2004
1212217991242443598310 ~2002
1212237443242447488710 ~2002
1212256763242451352710 ~2002
1212322109969857687310 ~2003
1212355721969884576910 ~2003
1212365753727419451910 ~2003
1212384863242476972710 ~2002
1212492503242498500710 ~2002
1212498431242499686310 ~2002
1212554159242510831910 ~2002
Exponent Prime Factor Digits Year
1212569833727541899910 ~2003
1212585221970068176910 ~2003
1212593351242518670310 ~2002
1212627491970101992910 ~2003
1212627743242525548710 ~2002
1212640223242528044710 ~2002
1212669743242533948710 ~2002
1212671231970136984910 ~2003
1212710171242542034310 ~2002
1212751079242550215910 ~2002
1212791171242558234310 ~2002
1212801599242560319910 ~2002
1212812099242562419910 ~2002
12128184431940509508911 ~2004
1212829991242565998310 ~2002
1212835451242567090310 ~2002
1212917291242583458310 ~2002
1212933131242586626310 ~2002
12129532631940725220911 ~2004
12129886136792736232911 ~2005
1213006079242601215910 ~2002
1213016891242603378310 ~2002
1213032419970425935310 ~2003
12130744271213074427111 ~2004
1213075991242615198310 ~2002
Home
4.843.404 digits
e-mail
25-06-08