Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1238182859247636571910 ~2002
12382100815943408388911 ~2005
1238215031247643006310 ~2002
1238287859247657571910 ~2002
1238402833743041699910 ~2003
1238417933743050759910 ~2003
1238417951247683590310 ~2002
1238420483247684096710 ~2002
1238449319247689863910 ~2002
1238476451247695290310 ~2002
12384810713220050784711 ~2005
1238513819247702763910 ~2002
1238536571247707314310 ~2002
1238542043247708408710 ~2002
1238562881743137728710 ~2003
1238597999247719599910 ~2002
1238635679247727135910 ~2002
1238656541743193924710 ~2003
1238670143247734028710 ~2002
1238679791247735958310 ~2002
1238811733743287039910 ~2003
1238858639247771727910 ~2002
1238859899247771979910 ~2002
1238872139247774427910 ~2002
1238892899247778579910 ~2002
Exponent Prime Factor Digits Year
1238933639247786727910 ~2002
1238945219247789043910 ~2002
1238984963247796992710 ~2002
1239006683247801336710 ~2002
1239025661743415396710 ~2003
1239077783247815556710 ~2002
1239088751247817750310 ~2002
1239103499247820699910 ~2002
1239190921743514552710 ~2003
1239221831247844366310 ~2002
1239238753743543251910 ~2003
1239264479247852895910 ~2002
1239305161743583096710 ~2003
1239325259247865051910 ~2002
1239330017991464013710 ~2003
1239350471247870094310 ~2002
1239380339247876067910 ~2002
1239436631247887326310 ~2002
1239460679247892135910 ~2002
1239502937991602349710 ~2003
1239547091247909418310 ~2002
1239669731247933946310 ~2002
12396773993966967676911 ~2005
1239704237743822542310 ~2003
1239706379991765103310 ~2003
Exponent Prime Factor Digits Year
1239767051247953410310 ~2002
1239769631247953926310 ~2002
1239911639247982327910 ~2002
1239961013743976607910 ~2003
1239983483247996696710 ~2002
12400275191240027519111 ~2004
12400363131736050838311 ~2004
12400470417688291654311 ~2006
1240050503248010100710 ~2002
1240071671248014334310 ~2002
12401001531736140214311 ~2004
1240106017744063610310 ~2003
1240122263248024452710 ~2002
1240136951248027390310 ~2002
1240176251248035250310 ~2002
1240229273744137563910 ~2003
12403188015705466484711 ~2005
1240387979248077595910 ~2002
1240397771248079554310 ~2002
1240474643248094928710 ~2002
12404961891736694664711 ~2004
1240509311248101862310 ~2002
1240511113744306667910 ~2003
1240528511992422808910 ~2003
1240534859248106971910 ~2002
Exponent Prime Factor Digits Year
1240535651248107130310 ~2002
1240545563248109112710 ~2002
12405539111984886257711 ~2004
1240585103248117020710 ~2002
1240639919248127983910 ~2002
1240691357744414814310 ~2003
1240719743248143948710 ~2002
1240739459248147891910 ~2002
1240759511248151902310 ~2002
1240824587992659669710 ~2003
1240837583248167516710 ~2002
1240913171248182634310 ~2002
1240935973744561583910 ~2003
1240949441744569664710 ~2003
1240960991248192198310 ~2002
12409849031985575844911 ~2004
1240992611992794088910 ~2003
1241024243248204848710 ~2002
1241044331248208866310 ~2002
1241090113744654067910 ~2003
1241112083248222416710 ~2002
1241193313744715987910 ~2003
1241258279248251655910 ~2002
1241325443248265088710 ~2002
1241349731248269946310 ~2002
Home
4.933.056 digits
e-mail
25-07-20