Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17551942812808310849711 ~2005
17552011011053120660711 ~2004
1755264323351052864710 ~2003
17553412991755341299111 ~2005
175536703910181128826312 ~2007
1755404219351080843910 ~2003
1755428399351085679910 ~2003
1755510479351102095910 ~2003
1755511151351102230310 ~2003
175553638110884325562312 ~2007
1755547259351109451910 ~2003
17556211371404496909711 ~2005
1755670379351134075910 ~2003
1755676823351135364710 ~2003
17557051093862551239911 ~2006
17557192011404575360911 ~2005
1755778679351155735910 ~2003
1755820691351164138310 ~2003
17558696393160565350311 ~2006
1755896591351179318310 ~2003
1755941783351188356710 ~2003
1755964043351192808710 ~2003
1756115771351223154310 ~2003
1756123823351224764710 ~2003
1756138679351227735910 ~2003
Exponent Prime Factor Digits Year
1756169171351233834310 ~2003
17561696211404935696911 ~2005
17562593172810014907311 ~2005
1756269143351253828710 ~2003
1756319783351263956710 ~2003
1756342559351268511910 ~2003
1756354343351270868710 ~2003
17563838771053830326311 ~2004
17564091135269227339111 ~2006
1756411439351282287910 ~2003
1756417571351283514310 ~2003
1756431119351286223910 ~2003
17564645531053878731911 ~2004
17564868892459081644711 ~2005
1756610903351322180710 ~2003
17566376691405310135311 ~2005
1756735199351347039910 ~2003
1756737011351347402310 ~2003
1756835543351367108710 ~2003
1756969199351393839910 ~2003
1757055719351411143910 ~2003
1757194823351438964710 ~2003
1757316383351463276710 ~2003
17573986093866276939911 ~2006
17573989611405919168911 ~2005
Exponent Prime Factor Digits Year
1757443151351488630310 ~2003
17574478498435749675311 ~2007
1757449703351489940710 ~2003
1757541083351508216710 ~2003
1757651279351530255910 ~2003
1757687219351537443910 ~2003
1757736551351547310310 ~2003
17578821431757882143111 ~2005
1757986283351597256710 ~2003
1758031631351606326310 ~2003
1758041591351608318310 ~2003
1758050039351610007910 ~2003
1758071351351614270310 ~2003
1758281039351656207910 ~2003
17583888172461744343911 ~2005
17585317011406825360911 ~2005
1758610019351722003910 ~2003
17586109611055166576711 ~2004
1758738203351747640710 ~2003
17588365811055301948711 ~2004
1758846059351769211910 ~2003
1758896039351779207910 ~2003
17590402372462656331911 ~2005
1759063343351812668710 ~2003
17592328011407386240911 ~2005
Exponent Prime Factor Digits Year
1759233263351846652710 ~2003
17592803811055568228711 ~2004
17592845811407427664911 ~2005
17593162272814905963311 ~2005
1759337399351867479910 ~2003
1759409831351881966310 ~2003
1759421063351884212710 ~2003
1759449071351889814310 ~2003
1759479959351895991910 ~2003
17595427731055725663911 ~2004
17595766971055746018311 ~2004
1759594451351918890310 ~2003
17596672191407733775311 ~2005
17596680131055800807911 ~2004
17596710411407736832911 ~2005
17598042975279412891111 ~2006
1759810931351962186310 ~2003
1759846463351969292710 ~2003
1759908803351981760710 ~2003
1759931291351986258310 ~2003
17599851195983949404711 ~2006
1760119391352023878310 ~2003
1760183891352036778310 ~2003
17602635291408210823311 ~2005
1760287871352057574310 ~2003
Home
4.724.182 digits
e-mail
25-04-13