Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1551067439310213487910 ~2003
1551080339310216067910 ~2003
1551268871310253774310 ~2003
1551324563310264912710 ~2003
1551339599310267919910 ~2003
1551347543310269508710 ~2003
1551354263310270852710 ~2003
1551390803310278160710 ~2003
1551440939310288187910 ~2003
1551455831310291166310 ~2003
1551507563310301512710 ~2003
15515356971241228557711 ~2004
1551566063310313212710 ~2003
1551571937930943162310 ~2004
15516044231551604423111 ~2004
15516381972482621115311 ~2005
1551639539310327907910 ~2003
1551667079310333415910 ~2003
1551708299310341659910 ~2003
1551753023310350604710 ~2003
1551756683310351336710 ~2003
1551816173931089703910 ~2004
1551820043310364008710 ~2003
1551890999310378199910 ~2003
1551925811310385162310 ~2003
Exponent Prime Factor Digits Year
1552158119310431623910 ~2003
1552166711310433342310 ~2003
1552196759310439351910 ~2003
1552221773931333063910 ~2004
1552232723310446544710 ~2003
1552236773931342063910 ~2004
1552279583310455916710 ~2003
1552379291310475858310 ~2003
1552425401931455240710 ~2004
1552438799310487759910 ~2003
1552439183310487836710 ~2003
1552501739310500347910 ~2003
1552544243310508848710 ~2003
1552602059310520411910 ~2003
1552618393931571035910 ~2004
1552650251310530050310 ~2003
15526626891242130151311 ~2004
1552841051310568210310 ~2003
1552860791310572158310 ~2003
1552869179310573835910 ~2003
15529133591552913359111 ~2004
1552985723310597144710 ~2003
1553020883310604176710 ~2003
15530322911553032291111 ~2004
1553093039310618607910 ~2003
Exponent Prime Factor Digits Year
1553102783310620556710 ~2003
1553116553931869931910 ~2004
1553219483310643896710 ~2003
1553238839310647767910 ~2003
1553286437931971862310 ~2004
1553330081931998048710 ~2004
1553436337932061802310 ~2004
1553470613932082367910 ~2004
155357039932624978379112 ~2008
1553593793932156275910 ~2004
1553611439310722287910 ~2003
1553614103310722820710 ~2003
15536312832485810052911 ~2005
1553702603310740520710 ~2003
1553713103310742620710 ~2003
1553722799310744559910 ~2003
15537900591243032047311 ~2004
1553829731310765946310 ~2003
1553846711310769342310 ~2003
1553877203310775440710 ~2003
1553883983310776796710 ~2003
1553905571310781114310 ~2003
1553943233932365939910 ~2004
1554006539310801307910 ~2003
1554027743310805548710 ~2003
Exponent Prime Factor Digits Year
1554074519310814903910 ~2003
1554090557932454334310 ~2004
1554163991310832798310 ~2003
15541901712797542307911 ~2005
15542761371243420909711 ~2004
1554284183310856836710 ~2003
1554329963310865992710 ~2003
15543353571243468285711 ~2004
1554352201932611320710 ~2004
1554365951310873190310 ~2003
1554445883310889176710 ~2003
15545872636529266504711 ~2006
155466029323319904395112 ~2007
1554681143310936228710 ~2003
1554691091310938218310 ~2003
1554752471310950494310 ~2003
1554809801932885880710 ~2004
1554836771310967354310 ~2003
1554850403310970080710 ~2003
1554854363310970872710 ~2003
1554881879310976375910 ~2003
1554920701932952420710 ~2004
1554928223310985644710 ~2003
15549409912798893783911 ~2005
1555013423311002684710 ~2003
Home
4.843.404 digits
e-mail
25-06-08