Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1690441583338088316710 ~2003
1690449671338089934310 ~2003
1690507979338101595910 ~2003
1690554419338110883910 ~2003
16905719593043029526311 ~2005
16906587193043185694311 ~2005
1690699919338139983910 ~2003
1690730039338146007910 ~2003
1690792679338158535910 ~2003
1690792991338158598310 ~2003
1690796351338159270310 ~2003
1690813199338162639910 ~2003
1690852343338170468710 ~2003
1690886159338177231910 ~2003
16909618611352769488911 ~2005
1691013419338202683910 ~2003
16910492991352839439311 ~2005
1691081303338216260710 ~2003
1691091971338218394310 ~2003
1691139143338227828710 ~2003
1691156231338231246310 ~2003
16912403235750217098311 ~2006
1691255099338251019910 ~2003
1691279543338255908710 ~2003
1691437799338287559910 ~2003
Exponent Prime Factor Digits Year
1691479943338295988710 ~2003
1691545259338309051910 ~2003
1691660903338332180710 ~2003
169168807718608568847112 ~2007
1691801411338360282310 ~2003
16918071372706891419311 ~2005
1691842079338368415910 ~2003
16918536776429043972711 ~2006
16921280931015276855911 ~2004
16922111091353768887311 ~2005
1692276023338455204710 ~2003
16922814411015368864711 ~2004
1692288659338457731910 ~2003
1692368663338473732710 ~2003
1692567323338513464710 ~2003
1692616811338523362310 ~2003
1692678791338535758310 ~2003
16927567574062616216911 ~2006
1692757271338551454310 ~2003
1692762959338552591910 ~2003
1692775583338555116710 ~2003
16927849971354227997711 ~2005
1692825611338565122310 ~2003
16928551631692855163111 ~2005
1692979859338595971910 ~2003
Exponent Prime Factor Digits Year
1692984131338596826310 ~2003
1693051331338610266310 ~2003
1693099979338619995910 ~2003
1693131491338626298310 ~2003
16932192913047794723911 ~2005
1693349519338669903910 ~2003
1693369019338673803910 ~2003
169337134932512729900912 ~2008
16934447518128534804911 ~2006
1693809443338761888710 ~2003
1693815443338763088710 ~2003
1693930811338786162310 ~2003
1693957151338791430310 ~2003
1693960283338792056710 ~2003
169396996717617287656912 ~2007
1694046551338809310310 ~2003
1694048423338809684710 ~2003
16941306175082391851111 ~2006
1694224331338844866310 ~2003
1694245691338849138310 ~2003
16942577831694257783111 ~2005
16942593193049666774311 ~2005
1694259863338851972710 ~2003
16943708571016622514311 ~2004
1694378963338875792710 ~2003
Exponent Prime Factor Digits Year
1694491283338898256710 ~2003
1694505203338901040710 ~2003
1694520323338904064710 ~2003
1694539631338907926310 ~2003
16946365011016781900711 ~2004
1694648363338929672710 ~2003
16946583591355726687311 ~2005
1694679839338935967910 ~2003
1694690999338938199910 ~2003
1694704391338940878310 ~2003
16947603372711616539311 ~2005
1694837723338967544710 ~2003
1694897819338979563910 ~2003
1695037271339007454310 ~2003
1695075311339015062310 ~2003
16951042933729229444711 ~2006
1695197723339039544710 ~2003
1695230171339046034310 ~2003
1695260603339052120710 ~2003
1695276659339055331910 ~2003
16952911731017174703911 ~2004
1695312263339062452710 ~2003
16953761691356300935311 ~2005
1695617639339123527910 ~2003
1695647339339129467910 ~2003
Home
4.843.404 digits
e-mail
25-06-08