Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17608818971056529138311 ~2004
176099294912679149232912 ~2007
1761030203352206040710 ~2003
1761076991352215398310 ~2003
17610818531056649111911 ~2004
17611191891408895351311 ~2005
1761127139352225427910 ~2003
1761160799352232159910 ~2003
1761173723352234744710 ~2003
17612236372465713091911 ~2005
1761226619352245323910 ~2003
17612607011056756420711 ~2004
1761283943352256788710 ~2003
17614993511761499351111 ~2005
17616780012818684801711 ~2005
1761714203352342840710 ~2003
1761820523352364104710 ~2003
1761860819352372163910 ~2003
17619168291409533463311 ~2005
1761962651352392530310 ~2003
17620990131057259407911 ~2004
17621768411057306104711 ~2004
17621812095286543627111 ~2006
1762205603352441120710 ~2003
17622117471409769397711 ~2005
Exponent Prime Factor Digits Year
17622649491409811959311 ~2005
17622665931057359955911 ~2004
176237335928197973744112 ~2008
17624239131057454347911 ~2004
17624438331057466299911 ~2004
1762467743352493548710 ~2003
1762475219352495043910 ~2003
1762571963352514392710 ~2003
17625818171057549090311 ~2004
1762610123352522024710 ~2003
1762629923352525984710 ~2003
1762657283352531456710 ~2003
1762668203352533640710 ~2003
1762708043352541608710 ~2003
1762764911352552982310 ~2003
1762796099352559219910 ~2003
1762819319352563863910 ~2003
17628346931057700815911 ~2004
17630400171410432013711 ~2005
17630912571057854754311 ~2004
1763097179352619435910 ~2003
176312295716925980387312 ~2007
17632299131057937947911 ~2004
1763560391352712078310 ~2003
1763653883352730776710 ~2003
Exponent Prime Factor Digits Year
1763724239352744847910 ~2003
1763887571352777514310 ~2003
1763923631352784726310 ~2003
17639747831763974783111 ~2005
17639935011411194800911 ~2005
1764064979352812995910 ~2003
17640668091411253447311 ~2005
1764072671352814534310 ~2003
17641107171058466430311 ~2004
176416965110232183975912 ~2007
1764194483352838896710 ~2003
17642444532822791124911 ~2005
17642572212822811553711 ~2005
1764294359352858871910 ~2003
17643150891411452071311 ~2005
17643562611058613756711 ~2004
17644281171058656870311 ~2004
1764471899352894379910 ~2003
1764509471352901894310 ~2003
1764567179352913435910 ~2003
17645917931058755075911 ~2004
1764786143352957228710 ~2003
1764799259352959851910 ~2003
17648583674235660080911 ~2006
1764905399352981079910 ~2003
Exponent Prime Factor Digits Year
1764944543352988908710 ~2003
1765040339353008067910 ~2003
17650472411059028344711 ~2004
1765129799353025959910 ~2003
17651685791765168579111 ~2005
1765181963353036392710 ~2003
1765209371353041874310 ~2003
17653203917061281564111 ~2006
1765415831353083166310 ~2003
1765453499353090699910 ~2003
1765511771353102354310 ~2003
17655491931059329515911 ~2004
1765562423353112484710 ~2003
1765753259353150651910 ~2003
17657535131059452107911 ~2004
17657967771059478066311 ~2004
1765817723353163544710 ~2003
17658686171059521170311 ~2004
17658901512825424241711 ~2005
1765903019353180603910 ~2003
17659162331059549739911 ~2004
1765987703353197540710 ~2003
1765989479353197895910 ~2003
17660155491412812439311 ~2005
1766182823353236564710 ~2003
Home
4.843.404 digits
e-mail
25-06-08