Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1836839159367367831910 ~2003
18368403111469472248911 ~2005
1836895223367379044710 ~2003
18369094273306436968711 ~2006
18369414411102164864711 ~2005
1836986363367397272710 ~2003
1837004243367400848710 ~2003
18370348611469627888911 ~2005
1837081391367416278310 ~2003
1837113191367422638310 ~2003
1837195571367439114310 ~2003
1837199183367439836710 ~2003
1837448939367489787910 ~2003
1837491611367498322310 ~2003
18375697071470055765711 ~2005
18375748911470059912911 ~2005
1837600991367520198310 ~2003
1837620731367524146310 ~2003
18376708311470136664911 ~2005
18377009471837700947111 ~2005
18377195537350878212111 ~2007
1837763783367552756710 ~2003
183777029925361230126312 ~2008
18378950932573053130311 ~2005
1837926071367585214310 ~2003
Exponent Prime Factor Digits Year
18379371171470349693711 ~2005
18379764892573167084711 ~2005
1837982483367596496710 ~2003
1837997543367599508710 ~2003
1838025863367605172710 ~2003
18380358193308464474311 ~2006
18380617811102837068711 ~2005
1838233931367646786310 ~2003
18382857971102971478311 ~2005
18382996271838299627111 ~2005
1838343599367668719910 ~2003
1838373479367674695910 ~2003
1838389823367677964710 ~2003
18384453471470756277711 ~2005
1838455103367691020710 ~2003
18385419071838541907111 ~2005
1838578811367715762310 ~2003
1838596139367719227910 ~2003
18386970191838697019111 ~2005
18387194811470975584911 ~2005
18387364611103241876711 ~2005
1838772251367754450310 ~2003
1838850659367770131910 ~2003
1838878511367775702310 ~2003
18388907171103334430311 ~2005
Exponent Prime Factor Digits Year
18388977471471118197711 ~2005
1839001019367800203910 ~2003
1839029303367805860710 ~2003
18391642211103498532711 ~2005
1839288443367857688710 ~2003
18393665771103619946311 ~2005
1839391679367878335910 ~2003
18394105191471528415311 ~2005
1839434123367886824710 ~2003
1839571523367914304710 ~2003
1839636923367927384710 ~2003
1839662771367932554310 ~2003
18399091031839909103111 ~2005
1839946403367989280710 ~2003
18400882271840088227111 ~2005
1840156379368031275910 ~2003
18401784771104107086311 ~2005
18402347231840234723111 ~2005
18403092531104185551911 ~2005
1840413299368082659910 ~2003
1840426883368085376710 ~2003
1840444883368088976710 ~2003
1840473263368094652710 ~2003
1840488659368097731910 ~2003
1840502591368100518310 ~2003
Exponent Prime Factor Digits Year
1840519283368103856710 ~2003
18405914571104354874311 ~2005
1840605479368121095910 ~2003
1840609451368121890310 ~2003
1840621571368124314310 ~2003
1840638179368127635910 ~2003
1840657631368131526310 ~2003
18406961571104417694311 ~2005
1840768571368153714310 ~2003
1840782791368156558310 ~2003
1840783079368156615910 ~2003
18408818931104529135911 ~2005
1840940879368188175910 ~2003
18409630132577348218311 ~2005
18409875535522962659111 ~2006
18409973511472797880911 ~2005
1841053391368210678310 ~2003
18410765513313937791911 ~2006
1841078471368215694310 ~2003
1841130359368226071910 ~2003
1841138723368227744710 ~2003
18411423495523427047111 ~2006
18411642171472931373711 ~2005
1841229443368245888710 ~2003
184124677946031169475112 ~2009
Home
4.843.404 digits
e-mail
25-06-08