Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1600567621960340572710 ~2004
1600635383320127076710 ~2003
16006408491280512679311 ~2004
1600657139320131427910 ~2003
1600723499320144699910 ~2003
1600753943320150788710 ~2003
1600892231320178446310 ~2003
1600900799320180159910 ~2003
1600900979320180195910 ~2003
1600945103320189020710 ~2003
1601014823320202964710 ~2003
16010158371280812669711 ~2004
16010898493522397667911 ~2005
1601100971320220194310 ~2003
16011101871280888149711 ~2004
1601203517960722110310 ~2004
16013230511601323051111 ~2005
1601323931320264786310 ~2003
1601324099320264819910 ~2003
1601397353960838411910 ~2004
1601408999320281799910 ~2003
1601429723320285944710 ~2003
1601457673960874603910 ~2004
1601459603320291920710 ~2003
1601460323320292064710 ~2003
Exponent Prime Factor Digits Year
1601466263320293252710 ~2003
16015590732562494516911 ~2005
1601569751320313950310 ~2003
1601685083320337016710 ~2003
1601703721961022232710 ~2004
1601865299320373059910 ~2003
1601871203320374240710 ~2003
1601872619320374523910 ~2003
1601879039320375807910 ~2003
1601927963320385592710 ~2003
1601949803320389960710 ~2003
1601953343320390668710 ~2003
1601968217961180930310 ~2004
160199126911534337136912 ~2007
1602023639320404727910 ~2003
1602045253961227151910 ~2004
1602176399320435279910 ~2003
1602197279320439455910 ~2003
1602224699320444939910 ~2003
16022707214806812163111 ~2006
1602397477961438486310 ~2004
1602401459320480291910 ~2003
1602437579320487515910 ~2003
16025546091282043687311 ~2004
1602576011320515202310 ~2003
Exponent Prime Factor Digits Year
16026860874166983826311 ~2006
1602734123320546824710 ~2003
1602742343320548468710 ~2003
1602746777961648066310 ~2004
16028027572243923859911 ~2005
1602834251320566850310 ~2003
1602892883320578576710 ~2003
1602922319320584463910 ~2003
1602940511320588102310 ~2003
16029507111282360568911 ~2004
1602991919320598383910 ~2003
1602994703320598940710 ~2003
1602995171320599034310 ~2003
1603016903320603380710 ~2003
16030886933847412863311 ~2006
1603091761961855056710 ~2004
1603165103320633020710 ~2003
1603178891320635778310 ~2003
1603187279320637455910 ~2003
1603207883320641576710 ~2003
1603270321961962192710 ~2004
16033017672885943180711 ~2005
1603306751320661350310 ~2003
1603342253962005351910 ~2004
1603372139320674427910 ~2003
Exponent Prime Factor Digits Year
16035348471282827877711 ~2004
1603549331320709866310 ~2003
1603551611320710322310 ~2003
1603602491320720498310 ~2003
16036302895131616924911 ~2006
1603636019320727203910 ~2003
16036505991282920479311 ~2004
1603683299320736659910 ~2003
1603685483320737096710 ~2003
16036868397697696827311 ~2006
1603736219320747243910 ~2003
16038392211283071376911 ~2004
1603849319320769863910 ~2003
1603964963320792992710 ~2003
1603980317962388190310 ~2004
1603991111320798222310 ~2003
16040304111283224328911 ~2004
16040322116736935286311 ~2006
1604069171320813834310 ~2003
1604076359320815271910 ~2003
1604088911320817782310 ~2003
1604114819320822963910 ~2003
16041269695133206300911 ~2006
16042032592887565866311 ~2005
1604220323320844064710 ~2003
Home
4.933.056 digits
e-mail
25-07-20