Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1937718371387543674310 ~2004
19377428391550194271311 ~2005
1937766731387553346310 ~2004
19377997011162679820711 ~2005
19378112233100497956911 ~2006
1937837651387567530310 ~2004
19378429695813528907111 ~2006
19378479311937847931111 ~2005
19378690611162721436711 ~2005
1937997623387599524710 ~2004
19380415972713258235911 ~2006
19380707471938070747111 ~2005
1938087311387617462310 ~2004
19381709571162902574311 ~2005
1938327971387665594310 ~2004
1938366071387673214310 ~2004
1938409463387681892710 ~2004
1938446123387689224710 ~2004
1938489803387697960710 ~2004
1938597851387719570310 ~2004
1938648119387729623910 ~2004
1938792431387758486310 ~2004
1938844163387768832710 ~2004
1938960251387792050310 ~2004
1938965351387793070310 ~2004
Exponent Prime Factor Digits Year
1939058123387811624710 ~2004
1939190783387838156710 ~2004
1939340219387868043910 ~2004
1939353431387870686310 ~2004
1939420883387884176710 ~2004
1939425023387885004710 ~2004
19394490131163669407911 ~2005
1939469723387893944710 ~2004
1939485071387897014310 ~2004
1939510031387902006310 ~2004
19395932331163755939911 ~2005
193961466712801456802312 ~2007
19396555331163793319911 ~2005
19397234811551778784911 ~2005
19397860811163871648711 ~2005
1939817123387963424710 ~2004
19401300411164078024711 ~2005
1940144183388028836710 ~2004
19402260891552180871311 ~2005
1940240723388048144710 ~2004
19403192815820957843111 ~2006
19404622031940462203111 ~2005
1940466431388093286310 ~2004
19405486511940548651111 ~2005
19406503631940650363111 ~2005
Exponent Prime Factor Digits Year
1940669891388133978310 ~2004
1940734751388146950310 ~2004
19407430191552594415311 ~2005
1940754383388150876710 ~2004
19407684771164461086311 ~2005
1940771951388154390310 ~2004
1940825279388165055910 ~2004
1940856371388171274310 ~2004
1940860391388172078310 ~2004
19409111035046368867911 ~2006
1940959439388191887910 ~2004
19409725211164583512711 ~2005
1940973959388194791910 ~2004
19409826892717375764711 ~2006
19409954531164597271911 ~2005
194101392712810691918312 ~2007
1941065039388213007910 ~2004
1941065543388213108710 ~2004
19411584737764633892111 ~2007
1941263111388252622310 ~2004
1941361283388272256710 ~2004
19413682873106189259311 ~2006
19413857231941385723111 ~2005
1941479531388295906310 ~2004
19417523771165051426311 ~2005
Exponent Prime Factor Digits Year
1941755771388351154310 ~2004
1941816119388363223910 ~2004
19418694416213982211311 ~2006
1941991979388398395910 ~2004
19420830371165249822311 ~2005
194209288121363021691112 ~2008
1942108403388421680710 ~2004
1942135691388427138310 ~2004
19421564571553725165711 ~2005
1942239671388447934310 ~2004
1942358051388471610310 ~2004
1942440491388488098310 ~2004
1942456151388491230310 ~2004
1942540823388508164710 ~2004
1942556723388511344710 ~2004
19425846011165550760711 ~2005
19427160731165629643911 ~2005
19427865771165671946311 ~2005
1942791659388558331910 ~2004
19428814631942881463111 ~2005
1942945331388589066310 ~2004
19429660338937643751911 ~2007
1942994303388598860710 ~2004
1943033699388606739910 ~2004
19430726171165843570311 ~2005
Home
4.828.532 digits
e-mail
25-06-01