Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2659955591531991118310 ~2005
26600281796384067629711 ~2007
26601427811596085668711 ~2006
26602219377980665811111 ~2007
2660225063532045012710 ~2005
26603363331596201799911 ~2006
2660440511532088102310 ~2005
26604426771596265606311 ~2006
26604527272128362181711 ~2006
2660498843532099768710 ~2005
2660510543532102108710 ~2005
2660542271532108454310 ~2005
2660591663532118332710 ~2005
2660737823532147564710 ~2005
2660778551532155710310 ~2005
2660858471532171694310 ~2005
2661063263532212652710 ~2005
2661201659532240331910 ~2005
2661230843532246168710 ~2005
2661414083532282816710 ~2005
26614284371596857062311 ~2006
2661447791532289558310 ~2005
2661642803532328560710 ~2005
26617230672661723067111 ~2006
26617538512129403080911 ~2006
Exponent Prime Factor Digits Year
2661801479532360295910 ~2005
2661812579532362515910 ~2005
26618213817985464143111 ~2007
26618303411597098204711 ~2006
2661917099532383419910 ~2005
266203954725555579651312 ~2009
2662070303532414060710 ~2005
266213167951112928236912 ~2009
2662241831532448366310 ~2005
2662276163532455232710 ~2005
2662348499532469699910 ~2005
2662400759532480151910 ~2005
2662475099532495019910 ~2005
2662532051532506410310 ~2005
2662588559532517711910 ~2005
26628782211597726932711 ~2006
26629083772130326701711 ~2006
2662999439532599887910 ~2005
26632761497989828447111 ~2007
2663341403532668280710 ~2005
26635059411598103564711 ~2006
2663594651532718930310 ~2005
2663613863532722772710 ~2005
2663639123532727824710 ~2005
26640481611598428896711 ~2006
Exponent Prime Factor Digits Year
2664070523532814104710 ~2005
2664129179532825835910 ~2005
2664146363532829272710 ~2005
26642168534262746964911 ~2007
26644004211598640252711 ~2006
26644854011598691240711 ~2006
2664521003532904200710 ~2005
2664548891532909778310 ~2005
26647134531598828071911 ~2006
2664772871532954574310 ~2005
26648223974263715835311 ~2007
2664859559532971911910 ~2005
2664868931532973786310 ~2005
2664870503532974100710 ~2005
26649034274796826168711 ~2007
266497791111192907226312 ~2008
26649998092131999847311 ~2006
26650059971599003598311 ~2006
2665033583533006716710 ~2005
26650384612132030768911 ~2006
26650453672132036293711 ~2006
2665055663533011132710 ~2005
26652024531599121471911 ~2006
2665314863533062972710 ~2005
2665375283533075056710 ~2005
Exponent Prime Factor Digits Year
26654605279062565791911 ~2008
26654819535864060296711 ~2007
2665536851533107370310 ~2005
2665566539533113307910 ~2005
26655854276930522110311 ~2007
2665595111533119022310 ~2005
2665595423533119084710 ~2005
2665961951533192390310 ~2005
2666016659533203331910 ~2005
2666065763533213152710 ~2005
26662525814266004129711 ~2007
2666286299533257259910 ~2005
2666395499533279099910 ~2005
26664478034266316484911 ~2007
2666465603533293120710 ~2005
26665035771599902146311 ~2006
26665935971599956158311 ~2006
2666995403533399080710 ~2005
2667022811533404562310 ~2005
2667125423533425084710 ~2005
2667158171533431634310 ~2005
2667192191533438438310 ~2005
26672684331600361059911 ~2006
2667347759533469551910 ~2005
2667363719533472743910 ~2005
Home
4.724.182 digits
e-mail
25-04-13