Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2436762479487352495910 ~2004
2436791183487358236710 ~2004
24368105771462086346311 ~2005
24368181171462090870311 ~2005
24368250771949460061711 ~2006
2436887591487377518310 ~2004
2436916451487383290310 ~2004
2437180451487436090310 ~2004
24372427071949794165711 ~2006
2437396211487479242310 ~2004
2437396739487479347910 ~2004
24374140195849793645711 ~2007
24375916211462554972711 ~2005
2437633631487526726310 ~2004
2437792811487558562310 ~2004
24378054171462683250311 ~2005
2437864151487572830310 ~2004
2437867511487573502310 ~2004
2437935683487587136710 ~2004
24379749771950379981711 ~2006
2438042543487608508710 ~2004
2438048891487609778310 ~2004
24380845011462850700711 ~2005
24381689211462901352711 ~2005
2438320403487664080710 ~2004
Exponent Prime Factor Digits Year
2438413403487682680710 ~2004
2438430803487686160710 ~2004
2438452223487690444710 ~2004
24385506773413970947911 ~2006
2438573939487714787910 ~2004
2438585183487717036710 ~2004
2438644511487728902310 ~2004
24386658771950932701711 ~2006
2438756123487751224710 ~2004
24387711971463262718311 ~2005
2438827739487765547910 ~2004
2438941019487788203910 ~2004
243900586921463251647312 ~2008
2439057251487811450310 ~2004
24390650811463439048711 ~2005
2439128651487825730310 ~2004
2439151931487830386310 ~2004
24392836331463570179911 ~2005
2439332279487866455910 ~2004
2439546443487909288710 ~2004
2439585251487917050310 ~2004
24395976835855034439311 ~2007
2439605939487921187910 ~2004
2439607259487921451910 ~2004
2439738659487947731910 ~2004
Exponent Prime Factor Digits Year
24397838391951827071311 ~2006
2439799331487959866310 ~2004
2439848591487969718310 ~2004
2439919763487983952710 ~2004
2439952103487990420710 ~2004
2439965243487993048710 ~2004
2439979571487995914310 ~2004
2440027631488005526310 ~2004
2440038851488007770310 ~2004
24400398731464023923911 ~2005
2440043003488008600710 ~2004
2440087619488017523910 ~2004
2440114511488022902310 ~2004
24401328611464079716711 ~2005
2440158551488031710310 ~2004
244017163311224789511912 ~2008
24403598211952287856911 ~2006
24403846495856923157711 ~2007
2440397051488079410310 ~2004
2440409519488081903910 ~2004
24404454171952356333711 ~2006
2440494503488098900710 ~2004
24405938511952475080911 ~2006
24406636512440663651111 ~2006
24406996371952559709711 ~2006
Exponent Prime Factor Digits Year
2440752851488150570310 ~2004
2440777511488155502310 ~2004
24410250173417435023911 ~2006
2441102519488220503910 ~2004
2441147231488229446310 ~2004
2441217923488243584710 ~2004
2441225291488245058310 ~2004
2441257811488251562310 ~2004
2441264519488252903910 ~2004
2441278379488255675910 ~2004
2441283059488256611910 ~2004
24412832232441283223111 ~2006
2441298971488259794310 ~2004
24413241611464794496711 ~2005
2441328419488265683910 ~2004
2441407751488281550310 ~2004
24414402171464864130311 ~2005
2441477231488295446310 ~2004
2441526539488305307910 ~2004
2441620691488324138310 ~2004
24417585131465055107911 ~2005
2441810471488362094310 ~2004
24418133211465087992711 ~2005
2441816843488363368710 ~2004
2441909423488381884710 ~2004
Home
4.828.532 digits
e-mail
25-06-01