Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3046005779609201155910 ~2005
30460390912436831272911 ~2007
3046089659609217931910 ~2005
3046226219609245243910 ~2005
3046242239609248447910 ~2005
3046271411609254282310 ~2005
3046334339609266867910 ~2005
30463387731827803263911 ~2006
30465485531827929131911 ~2006
3046793699609358739910 ~2005
3047025011609405002310 ~2005
30471801892437744151311 ~2007
30472792811828367568711 ~2006
3047317079609463415910 ~2005
3047352299609470459910 ~2005
3047462963609492592710 ~2005
3047471111609494222310 ~2005
30477176272438174101711 ~2007
3047885339609577067910 ~2005
3047934083609586816710 ~2005
3047935619609587123910 ~2005
30480134692438410775311 ~2007
304810076312802023204712 ~2008
3048206303609641260710 ~2005
3048493691609698738310 ~2005
Exponent Prime Factor Digits Year
30486715997316811837711 ~2008
3048709991609741998310 ~2005
3048781523609756304710 ~2005
30488046731829282803911 ~2006
30488416672439073333711 ~2007
30490084611829405076711 ~2006
3049102139609820427910 ~2005
3049232663609846532710 ~2005
3049293059609858611910 ~2005
3049354751609870950310 ~2005
3049396799609879359910 ~2005
304941703910368017932712 ~2008
30495142331829708539911 ~2006
3049719923609943984710 ~2005
30497929012439834320911 ~2007
3049798991609959798310 ~2005
3049930931609986186310 ~2005
3049941299609988259910 ~2005
3049944503609988900710 ~2005
3049981439609996287910 ~2005
3050087171610017434310 ~2005
3050172791610034558310 ~2005
3050200451610040090310 ~2005
30503299277320791824911 ~2008
30503526894270493764711 ~2007
Exponent Prime Factor Digits Year
3050789039610157807910 ~2005
3051219239610243847910 ~2005
3051240431610248086310 ~2005
3051311891610262378310 ~2005
30513183772441054701711 ~2007
30513333014882133281711 ~2007
3051347891610269578310 ~2005
3051541991610308398310 ~2005
30516866233051686623111 ~2007
3051984599610396919910 ~2005
3052011191610402238310 ~2005
3052130591610426118310 ~2005
30522296995494013458311 ~2007
3052305779610461155910 ~2005
30523467712441877416911 ~2007
30523996131831439767911 ~2006
3052673003610534600710 ~2005
30527422331831645339911 ~2006
3052776791610555358310 ~2005
30528831614884613057711 ~2007
30529566531831773991911 ~2006
3053029979610605995910 ~2005
3053122151610624430310 ~2005
30531418011831885080711 ~2006
3053219783610643956710 ~2005
Exponent Prime Factor Digits Year
3053396891610679378310 ~2005
3053399819610679963910 ~2005
30535073411832104404711 ~2006
3053511143610702228710 ~2005
3053557631610711526310 ~2005
30536442131832186527911 ~2006
3053701439610740287910 ~2005
30537261777328942824911 ~2008
3053858471610771694310 ~2005
30539460014886313601711 ~2007
3054087923610817584710 ~2005
3054115931610823186310 ~2005
30541395411832483724711 ~2006
305418283912827567923912 ~2008
3054295763610859152710 ~2005
30542988172443439053711 ~2007
30543029692443442375311 ~2007
3054415583610883116710 ~2005
3054420599610884119910 ~2005
3054596183610919236710 ~2005
3054652823610930564710 ~2005
30547332171832839930311 ~2006
3054799739610959947910 ~2005
3054906479610981295910 ~2005
3055327211611065442310 ~2005
Home
4.724.182 digits
e-mail
25-04-13