Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
31493514894409092084711 ~2007
31495377712519630216911 ~2007
3149631659629926331910 ~2005
31496660571889799634311 ~2006
3149680139629936027910 ~2005
3149720111629944022310 ~2005
31498473475669725224711 ~2008
3149940071629988014310 ~2005
31499536931889972215911 ~2006
31499946892519995751311 ~2007
3150067451630013490310 ~2005
3150270659630054131910 ~2005
3150302531630060506310 ~2005
31503111412520248912911 ~2007
31503565011890213900711 ~2006
3150395159630079031910 ~2005
31503969411890238164711 ~2006
31503984736930876640711 ~2008
3150543023630108604710 ~2005
3150795551630159110310 ~2005
31508420212520673616911 ~2007
3150989879630197975910 ~2005
31510092171890605530311 ~2006
3151321571630264314310 ~2005
3151326911630265382310 ~2005
Exponent Prime Factor Digits Year
31513900192521112015311 ~2007
3151430351630286070310 ~2005
3151467971630293594310 ~2005
3151510391630302078310 ~2005
3151516331630303266310 ~2005
31515867411890952044711 ~2006
3151758719630351743910 ~2005
3151778039630355607910 ~2005
3151992071630398414310 ~2005
31520274913152027491111 ~2007
3152055551630411110310 ~2005
31521025792521682063311 ~2007
3152109599630421919910 ~2005
3152193623630438724710 ~2005
3152413679630482735910 ~2005
3152471411630494282310 ~2005
31526832772522146621711 ~2007
3152762243630552448710 ~2005
3152788631630557726310 ~2005
3152819531630563906310 ~2005
31528621371891717282311 ~2006
3153176231630635246310 ~2005
31532042211891922532711 ~2006
31532993411891979604711 ~2006
31534960912522796872911 ~2007
Exponent Prime Factor Digits Year
3153586391630717278310 ~2005
31535978571892158714311 ~2006
3153677519630735503910 ~2005
3153956363630791272710 ~2005
3154026971630805394310 ~2005
31540681672523254533711 ~2007
3154231631630846326310 ~2005
315426096150468175376112 ~2010
3154587743630917548710 ~2005
3154633043630926608710 ~2005
3154741223630948244710 ~2005
3154804319630960863910 ~2005
3154949723630989944710 ~2005
3155009723631001944710 ~2005
3155429939631085987910 ~2005
3155591039631118207910 ~2005
3155591291631118258310 ~2005
31557438172524595053711 ~2007
3156223919631244783910 ~2005
31563044299468913287111 ~2008
315632698333457066019912 ~2009
3156592823631318564710 ~2005
31566929411894015764711 ~2006
31567430595682137506311 ~2008
31569187571894151254311 ~2006
Exponent Prime Factor Digits Year
31570803477576992832911 ~2008
3157350239631470047910 ~2005
3157355783631471156710 ~2005
315742790910103769308912 ~2008
3157436279631487255910 ~2005
31574907172525992573711 ~2007
3157587791631517558310 ~2005
3157615199631523039910 ~2005
31576691571894601494311 ~2006
31578223734420951322311 ~2007
31578304331894698259911 ~2006
3157985471631597094310 ~2005
3158038979631607795910 ~2005
3158052851631610570310 ~2005
315807136341054927719112 ~2010
3158469599631693919910 ~2005
3158744843631748968710 ~2005
31589105411895346324711 ~2006
3158937779631787555910 ~2005
3158993951631798790310 ~2005
31590100971895406058311 ~2006
3159514223631902844710 ~2005
3159533843631906768710 ~2005
3159541823631908364710 ~2005
3159622523631924504710 ~2005
Home
4.724.182 digits
e-mail
25-04-13