Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
31798430337631623279311 ~2008
31798542433179854243111 ~2007
31798690935087790548911 ~2007
3179886719635977343910 ~2005
31802164931908129895911 ~2006
3180322283636064456710 ~2005
3180374159636074831910 ~2005
3180411683636082336710 ~2005
3180441371636088274310 ~2005
31804688571908281314311 ~2006
31804700995724846178311 ~2008
3180582803636116560710 ~2005
3180632531636126506310 ~2005
3180651251636130250310 ~2005
3181025759636205151910 ~2005
3181092539636218507910 ~2005
3181152983636230596710 ~2005
3181183991636236798310 ~2005
3181313903636262780710 ~2005
3181349399636269879910 ~2005
3181360571636272114310 ~2005
3181467671636293534310 ~2005
3181663763636332752710 ~2005
3181710923636342184710 ~2005
3181727231636345446310 ~2005
Exponent Prime Factor Digits Year
3181771991636354398310 ~2005
31818792971909127578311 ~2006
3182021651636404330310 ~2005
3182037779636407555910 ~2005
318215821115910791055112 ~2009
3182255243636451048710 ~2005
3182268359636453671910 ~2005
3182302463636460492710 ~2005
3182415023636483004710 ~2005
3182610839636522167910 ~2005
31826821211909609272711 ~2006
3182817779636563555910 ~2005
31829274412546341952911 ~2007
3183218543636643708710 ~2005
3183306323636661264710 ~2005
3183400439636680087910 ~2005
3183482171636696434310 ~2005
3183524243636704848710 ~2005
3183612059636722411910 ~2005
3183875003636775000710 ~2005
3183881843636776368710 ~2005
3184208063636841612710 ~2005
3184209863636841972710 ~2005
3184229819636845963910 ~2005
3184284503636856900710 ~2005
Exponent Prime Factor Digits Year
31843090811910585448711 ~2006
31843146412547451712911 ~2007
3184532783636906556710 ~2005
3184600931636920186310 ~2005
3184674743636934948710 ~2005
31847234715095557553711 ~2007
3184764263636952852710 ~2005
3184810283636962056710 ~2005
3184833863636966772710 ~2005
3184856039636971207910 ~2005
3184951331636990266310 ~2005
3185039831637007966310 ~2005
3185172899637034579910 ~2005
3185332523637066504710 ~2005
31853446515096551441711 ~2007
3185388119637077623910 ~2005
31855324731911319483911 ~2006
3185647691637129538310 ~2005
3185846063637169212710 ~2005
3185853743637170748710 ~2005
318590182721026952058312 ~2009
31859164011911549840711 ~2006
31859233312548738664911 ~2007
31859390692548751255311 ~2007
31861308237646713975311 ~2008
Exponent Prime Factor Digits Year
31865295731911917743911 ~2006
3186617459637323491910 ~2005
31866991211912019472711 ~2006
318695597913385215111912 ~2008
3187046003637409200710 ~2005
31870698913187069891111 ~2007
3187194371637438874310 ~2005
3187236683637447336710 ~2005
31872770872549821669711 ~2007
31874509019562352703111 ~2008
3187486871637497374310 ~2005
31875566392550045311311 ~2007
3187699379637539875910 ~2005
3187743131637548626310 ~2005
31877933171912675990311 ~2006
3187809899637561979910 ~2005
3187932263637586452710 ~2005
3187949519637589903910 ~2005
3188404883637680976710 ~2005
3188487899637697579910 ~2005
3188526119637705223910 ~2005
3188559743637711948710 ~2005
3189037451637807490310 ~2005
31891003817016020838311 ~2008
3189190079637838015910 ~2005
Home
4.724.182 digits
e-mail
25-04-13