Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3352856231670571246310 ~2005
3353005583670601116710 ~2005
33531490572011889434311 ~2007
3353177363670635472710 ~2005
33531813838718271595911 ~2008
3353385251670677050310 ~2005
3353498891670699778310 ~2005
3353572283670714456710 ~2005
3353618519670723703910 ~2005
33538625835366180132911 ~2008
33538833433353883343111 ~2007
33539411113353941111111 ~2007
3353968679670793735910 ~2005
3354035039670807007910 ~2005
33541731532012503891911 ~2007
3354297491670859498310 ~2005
33544297732012657863911 ~2007
3354499943670899988710 ~2005
33547695972012861758311 ~2007
3354800231670960046310 ~2005
33548375535367740084911 ~2008
33549300532012958031911 ~2007
33550761412013045684711 ~2007
3355121663671024332710 ~2005
33555197535368831604911 ~2008
Exponent Prime Factor Digits Year
3355711631671142326310 ~2005
3355732031671146406310 ~2005
335573937739597724648712 ~2010
3355749359671149871910 ~2005
3355750043671150008710 ~2005
3355891211671178242310 ~2005
3356379791671275958310 ~2005
3356381159671276231910 ~2005
335652622716111325889712 ~2009
335663253713426530148112 ~2009
3356662871671332574310 ~2005
335673073914098269103912 ~2009
3356973071671394614310 ~2005
33572576692685806135311 ~2007
3357269339671453867910 ~2005
33576246193357624619111 ~2007
335795995116118207764912 ~2009
3358012331671602466310 ~2005
33580505838059321399311 ~2008
33582438412686595072911 ~2007
3358265951671653190310 ~2005
3358328951671665790310 ~2005
3358451543671690308710 ~2005
3358474043671694808710 ~2005
3358503959671700791910 ~2005
Exponent Prime Factor Digits Year
3358646723671729344710 ~2005
3358649291671729858310 ~2005
3358650023671730004710 ~2005
3358666739671733347910 ~2005
3358801739671760347910 ~2005
3358853891671770778310 ~2005
3358987139671797427910 ~2005
3359006639671801327910 ~2005
33590158796046228582311 ~2008
3359201063671840212710 ~2005
3359242091671848418310 ~2005
3359395031671879006310 ~2005
33594220974703190935911 ~2007
3359610491671922098310 ~2005
3359673563671934712710 ~2005
33597308172015838490311 ~2007
3359896811671979362310 ~2005
3360074759672014951910 ~2005
3360278039672055607910 ~2005
3360501863672100372710 ~2005
33609598792688767903311 ~2007
3360960719672192143910 ~2005
336097768916132692907312 ~2009
3361109963672221992710 ~2005
3361142663672228532710 ~2005
Exponent Prime Factor Digits Year
3361228883672245776710 ~2005
3361285451672257090310 ~2005
3361344923672268984710 ~2005
33614852772016891166311 ~2007
3361502663672300532710 ~2005
3361593419672318683910 ~2005
3361610771672322154310 ~2005
3361752143672350428710 ~2005
3361880783672376156710 ~2005
3361916423672383284710 ~2005
3361951811672390362310 ~2005
3362231819672446363910 ~2005
33623053572017383214311 ~2007
3362405999672481199910 ~2005
3362549471672509894310 ~2005
3362679563672535912710 ~2005
33630238132017814287911 ~2007
33630472276053485008711 ~2008
33631338972017880338311 ~2007
33633618112690689448911 ~2007
3363419879672683975910 ~2005
3363504503672700900710 ~2005
3363612491672722498310 ~2005
3363620231672724046310 ~2005
3363663371672732674310 ~2005
Home
4.724.182 digits
e-mail
25-04-13