Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2947679279589535855910 ~2005
2947720883589544176710 ~2005
29477352011768641120711 ~2006
2948095571589619114310 ~2005
2948140511589628102310 ~2005
2948233979589646795910 ~2005
29484044212358723536911 ~2006
2948581019589716203910 ~2005
2948584403589716880710 ~2005
2948706011589741202310 ~2005
294871202918282014579912 ~2009
29487451938846235579111 ~2008
2948755703589751140710 ~2005
29487929712948792971111 ~2007
2948798159589759631910 ~2005
2948813051589762610310 ~2005
2948870591589774118310 ~2005
2948898791589779758310 ~2005
29489486771769369206311 ~2006
2949067991589813598310 ~2005
29491052834718568452911 ~2007
2949249059589849811910 ~2005
2949483611589896722310 ~2005
29495061172359604893711 ~2006
2949506711589901342310 ~2005
Exponent Prime Factor Digits Year
2949563399589912679910 ~2005
2949628631589925726310 ~2005
29497208272359776661711 ~2006
2949747491589949498310 ~2005
2949876071589975214310 ~2005
29498792774719806843311 ~2007
2949893651589978730310 ~2005
29498988011769939280711 ~2006
2949959651589991930310 ~2005
2950062539590012507910 ~2005
2950126871590025374310 ~2005
29501375211770082512711 ~2006
295021264737762721881712 ~2009
29503169872360253589711 ~2006
2950327031590065406310 ~2005
29503332371770199942311 ~2006
2950460531590092106310 ~2005
2950595891590119178310 ~2005
2950620131590124026310 ~2005
2950832543590166508710 ~2005
29508795715311583227911 ~2007
29509926011770595560711 ~2006
29510440992951044099111 ~2007
2951119859590223971910 ~2005
2951241959590248391910 ~2005
Exponent Prime Factor Digits Year
2951336039590267207910 ~2005
29513668612361093488911 ~2006
2951377931590275586310 ~2005
2951501279590300255910 ~2005
29515377611770922656711 ~2006
29516963275313053388711 ~2007
2951722391590344478310 ~2005
2951905871590381174310 ~2005
2951911139590382227910 ~2005
2951948843590389768710 ~2005
2951960111590392022310 ~2005
29520409131771224547911 ~2006
29522436892361794951311 ~2006
2952300551590460110310 ~2005
29525560034724089604911 ~2007
2952611411590522282310 ~2005
29526718814724275009711 ~2007
29527340171771640410311 ~2006
29527443297086586389711 ~2008
29527994331771679659911 ~2006
2952905951590581190310 ~2005
29529297112362343768911 ~2006
2952975299590595059910 ~2005
29531757171771905430311 ~2006
2953210919590642183910 ~2005
Exponent Prime Factor Digits Year
29533756795316076222311 ~2007
2953442603590688520710 ~2005
2953592963590718592710 ~2005
2953655363590731072710 ~2005
2953683059590736611910 ~2005
29537588832953758883111 ~2007
2953884803590776960710 ~2005
29538865312363109224911 ~2006
29540987092363278967311 ~2006
29541681011772500860711 ~2006
29541836272363346901711 ~2006
2954236751590847350310 ~2005
295432247923634579832112 ~2009
29543815371772628922311 ~2006
295450513954362894557712 ~2010
2954516423590903284710 ~2005
2954547311590909462310 ~2005
295473025711227974976712 ~2008
2955101291591020258310 ~2005
29552174931773130495911 ~2006
2955293051591058610310 ~2005
2955336563591067312710 ~2005
29555747572364459805711 ~2006
2955674231591134846310 ~2005
2955696851591139370310 ~2005
Home
4.828.532 digits
e-mail
25-06-01