Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
26649034274796826168711 ~2007
266497791111192907226312 ~2008
26649998092131999847311 ~2006
26650059971599003598311 ~2006
2665033583533006716710 ~2005
26650384612132030768911 ~2006
26650453672132036293711 ~2006
2665055663533011132710 ~2005
26652024531599121471911 ~2006
2665314863533062972710 ~2005
2665375283533075056710 ~2005
26654605279062565791911 ~2008
26654819535864060296711 ~2007
2665536851533107370310 ~2005
2665566539533113307910 ~2005
26655854276930522110311 ~2007
2665595111533119022310 ~2005
2665595423533119084710 ~2005
2665961951533192390310 ~2005
2666016659533203331910 ~2005
2666065763533213152710 ~2005
26662525814266004129711 ~2007
2666286299533257259910 ~2005
2666395499533279099910 ~2005
26664478034266316484911 ~2007
Exponent Prime Factor Digits Year
2666465603533293120710 ~2005
26665035771599902146311 ~2006
26665935971599956158311 ~2006
2666995403533399080710 ~2005
2667022811533404562310 ~2005
2667125423533425084710 ~2005
2667158171533431634310 ~2005
2667192191533438438310 ~2005
26672684331600361059911 ~2006
2667347759533469551910 ~2005
2667363719533472743910 ~2005
2667374123533474824710 ~2005
2667434999533486999910 ~2005
2667470243533494048710 ~2005
26675054872134004389711 ~2006
2667628739533525747910 ~2005
2667658223533531644710 ~2005
2667698639533539727910 ~2005
2667878771533575754310 ~2005
2667879299533575859910 ~2005
2667890363533578072710 ~2005
2667902819533580563910 ~2005
2668004831533600966310 ~2005
2668025663533605132710 ~2005
2668080059533616011910 ~2005
Exponent Prime Factor Digits Year
26680978971600858738311 ~2006
2668155443533631088710 ~2005
2668183139533636627910 ~2005
26682295796403750989711 ~2007
2668339559533667911910 ~2005
26683891971601033518311 ~2006
2668516871533703374310 ~2005
26686012632668601263111 ~2006
2668670351533734070310 ~2005
2668704371533740874310 ~2005
2668779611533755922310 ~2005
26689497971601369878311 ~2006
2669038439533807687910 ~2005
26690707695871955691911 ~2007
2669092571533818514310 ~2005
2669115503533823100710 ~2005
2669175623533835124710 ~2005
2669275919533855183910 ~2005
26694660131601679607911 ~2006
2669651531533930306310 ~2005
2669738783533947756710 ~2005
2669764931533952986310 ~2005
26698227171601893630311 ~2006
2669839811533967962310 ~2005
2669920343533984068710 ~2005
Exponent Prime Factor Digits Year
2670059963534011992710 ~2005
267023326321895912756712 ~2009
2670247523534049504710 ~2005
2670302639534060527910 ~2005
2670315311534063062310 ~2005
2670381179534076235910 ~2005
2670402011534080402310 ~2005
2670457043534091408710 ~2005
2670488003534097600710 ~2005
2670512483534102496710 ~2005
26705752935875265644711 ~2007
2670711779534142355910 ~2005
2670730703534146140710 ~2005
26707429371602445762311 ~2006
2670810683534162136710 ~2005
26708285692136662855311 ~2006
2670857603534171520710 ~2005
26709409018547010883311 ~2008
2671024871534204974310 ~2005
2671063319534212663910 ~2005
2671065311534213062310 ~2005
2671084919534216983910 ~2005
26711335032671133503111 ~2006
2671194299534238859910 ~2005
2671235639534247127910 ~2005
Home
4.933.056 digits
e-mail
25-07-20