Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2708675303541735060710 ~2005
27086761971625205718311 ~2006
2708680343541736068710 ~2005
2708700803541740160710 ~2005
2708772959541754591910 ~2005
2708834819541766963910 ~2005
2709017543541803508710 ~2005
27091120971625467258311 ~2006
2709135839541827167910 ~2005
2709137159541827431910 ~2005
2709165071541833014310 ~2005
2709221171541844234310 ~2005
2709349091541869818310 ~2005
2709483779541896755910 ~2005
2709746939541949387910 ~2005
27098584072167886725711 ~2006
27099186893793886164711 ~2007
2710069031542013806310 ~2005
2710167959542033591910 ~2005
27102153712168172296911 ~2006
2710228019542045603910 ~2005
2710325603542065120710 ~2005
27103506792710350679111 ~2006
2710515323542103064710 ~2005
2710594391542118878310 ~2005
Exponent Prime Factor Digits Year
2710595819542119163910 ~2005
27108053931626483235911 ~2006
27108091971626485518311 ~2006
27108334917048167076711 ~2007
2710892291542178458310 ~2005
2710929503542185900710 ~2005
2711302523542260504710 ~2005
27113105211626786312711 ~2006
27113765414338202465711 ~2007
27113933512169114680911 ~2006
2711421899542284379910 ~2005
2711474963542294992710 ~2005
27115290971626917458311 ~2006
2711536403542307280710 ~2005
27115679338677017385711 ~2008
271180052317897883451912 ~2008
2711836271542367254310 ~2005
2711957711542391542310 ~2005
2712127751542425550310 ~2005
27122056312169764504911 ~2006
27122108811627326528711 ~2006
2712289319542457863910 ~2005
2712299651542459930310 ~2005
2712399611542479922310 ~2005
27124082771627444966311 ~2006
Exponent Prime Factor Digits Year
2712426851542485370310 ~2005
2712446699542489339910 ~2005
271249994324412499487112 ~2009
27125249212170019936911 ~2006
2712535043542507008710 ~2005
27128518072170281445711 ~2006
27129315411627758924711 ~2006
2712936179542587235910 ~2005
2712949691542589938310 ~2005
2713056323542611264710 ~2005
2713132979542626595910 ~2005
2713168571542633714310 ~2005
2713191119542638223910 ~2005
2713278539542655707910 ~2005
27133616994884051058311 ~2007
27134001914341440305711 ~2007
2713449779542689955910 ~2005
2713503503542700700710 ~2005
27135869512170869560911 ~2006
2713690151542738030310 ~2005
2713715951542743190310 ~2005
2713846643542769328710 ~2005
27138722571628323354311 ~2006
27138957072713895707111 ~2006
27138976874342236299311 ~2007
Exponent Prime Factor Digits Year
2713922591542784518310 ~2005
2713961531542792306310 ~2005
2714040011542808002310 ~2005
2714085719542817143910 ~2005
271416130913027974283312 ~2008
2714208743542841748710 ~2005
27142118092171369447311 ~2006
2714273651542854730310 ~2005
2714367503542873500710 ~2005
2714434979542886995910 ~2005
27144509512171560760911 ~2006
27144558672714455867111 ~2006
2714478839542895767910 ~2005
27145123011628707380711 ~2006
2714521703542904340710 ~2005
27146180994886312578311 ~2007
2714618603542923720710 ~2005
2714664503542932900710 ~2005
27148094232714809423111 ~2006
2714887583542977516710 ~2005
2714912171542982434310 ~2005
27149880533800983274311 ~2007
27150508676516122080911 ~2007
2715320339543064067910 ~2005
2715327383543065476710 ~2005
Home
4.933.056 digits
e-mail
25-07-20