Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4399907423879981484710 ~2006
4400030039880006007910 ~2006
440028259710560678232912 ~2009
44005083532640305011911 ~2007
440072546332565368426312 ~2010
4400980439880196087910 ~2006
440104455125526058395912 ~2010
4401209363880241872710 ~2006
44014032972640841978311 ~2007
44015426172640925570311 ~2007
4401631319880326263910 ~2006
44018930572641135834311 ~2007
4401926999880385399910 ~2006
4401945059880389011910 ~2006
44020507973521640637711 ~2008
4402160051880432010310 ~2006
44028725532641723531911 ~2007
4403179619880635923910 ~2006
4403219363880643872710 ~2006
4403375519880675103910 ~2006
4403609159880721831910 ~2006
44038483572642309014311 ~2007
4403868851880773770310 ~2006
44038700412642322024711 ~2007
4403948603880789720710 ~2006
Exponent Prime Factor Digits Year
440398045910569553101712 ~2009
44043664132642619847911 ~2007
4404558839880911767910 ~2006
4404847103880969420710 ~2006
44049582532642974951911 ~2007
4405093523881018704710 ~2006
4405114751881022950310 ~2006
4405132139881026427910 ~2006
4405196639881039327910 ~2006
4405243103881048620710 ~2006
44052524932643151495911 ~2007
4405615583881123116710 ~2006
440572602120266339696712 ~2010
4406320823881264164710 ~2006
440632958910575191013712 ~2009
4406448731881289746310 ~2006
4406639663881327932710 ~2006
4406679911881335982310 ~2006
44067692812644061568711 ~2007
4406884991881376998310 ~2006
44070055939695412304711 ~2009
44074097812644445868711 ~2007
4407453203881490640710 ~2006
4407499259881499851910 ~2006
4408064651881612930310 ~2006
Exponent Prime Factor Digits Year
4408246919881649383910 ~2006
4408428371881685674310 ~2006
4408474919881694983910 ~2006
44088655994408865599111 ~2008
44090608612645436516711 ~2007
44091162917936409323911 ~2009
440939506317637580252112 ~2010
4409395979881879195910 ~2006
4409438711881887742310 ~2006
4409691911881938382310 ~2006
44098471812645908308711 ~2007
4409886731881977346310 ~2006
4410046451882009290310 ~2006
441013443774090258541712 ~2011
4410252551882050510310 ~2006
4410286883882057376710 ~2006
4410591491882118298310 ~2006
4410662363882132472710 ~2006
4410790271882158054310 ~2006
4410823559882164711910 ~2006
4410900731882180146310 ~2006
4411106279882221255910 ~2006
4411200011882240002310 ~2006
4411653131882330626310 ~2006
4412054303882410860710 ~2006
Exponent Prime Factor Digits Year
44122222073529777765711 ~2008
44123057717942150387911 ~2009
44124195732647451743911 ~2007
44126202732647572163911 ~2007
44127524474412752447111 ~2008
44127999296177919900711 ~2008
4413085823882617164710 ~2006
44133480612648008836711 ~2007
44138732812648323968711 ~2007
44142685812648561148711 ~2007
44142869273531429541711 ~2008
44146386917063421905711 ~2009
4415007659883001531910 ~2006
44152014314415201431111 ~2008
4415217503883043500710 ~2006
44153047493532243799311 ~2008
44155679212649340752711 ~2007
4415602283883120456710 ~2006
44157103496181994488711 ~2008
4415739371883147874310 ~2006
4415816831883163366310 ~2006
441581748113247452443112 ~2009
4415840003883168000710 ~2006
441595373932678057668712 ~2010
44159540093532763207311 ~2008
Home
4.724.182 digits
e-mail
25-04-13