Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4490329559898065911910 ~2006
4490959799898191959910 ~2006
44912936693593034935311 ~2008
4491300899898260179910 ~2006
4491635171898327034310 ~2006
4492550291898510058310 ~2006
4492722191898544438310 ~2006
44928765473594301237711 ~2008
4493058359898611671910 ~2006
4493076743898615348710 ~2006
4494022499898804499910 ~2006
4494163931898832786310 ~2006
44942045573595363645711 ~2008
449460559313483816779112 ~2009
44946741532696804491911 ~2008
4494772319898954463910 ~2006
4494882239898976447910 ~2006
4495073111899014622310 ~2006
4495414139899082827910 ~2006
4495434059899086811910 ~2006
44954647373596371789711 ~2008
4495492751899098550310 ~2006
4495605659899121131910 ~2006
4495939043899187808710 ~2006
4496038931899207786310 ~2006
Exponent Prime Factor Digits Year
449616255710790790136912 ~2009
44961685973596934877711 ~2008
44965258337194441332911 ~2009
44970580012698234800711 ~2008
44972034372698322062311 ~2008
4497222791899444558310 ~2006
4497238799899447759910 ~2006
4497359459899471891910 ~2006
4497432503899486500710 ~2006
4497923879899584775910 ~2006
44979741118096353399911 ~2009
44980683434498068343111 ~2008
44980845372698850722311 ~2008
44980855332698851319911 ~2008
4498415123899683024710 ~2006
4498818563899763712710 ~2006
4498836011899767202310 ~2006
44989726699897739871911 ~2009
4498987403899797480710 ~2006
4499030351899806070310 ~2006
4499039339899807867910 ~2006
44991125393599290031311 ~2008
4499117123899823424710 ~2006
4499175683899835136710 ~2006
449917639122495881955112 ~2010
Exponent Prime Factor Digits Year
4499255471899851094310 ~2006
44999430372699965822311 ~2008
44999633813599970704911 ~2008
4500015011900003002310 ~2006
4500306383900061276710 ~2006
4500488819900097763910 ~2006
4500665891900133178310 ~2006
4500747011900149402310 ~2006
4500769103900153820710 ~2006
45009442132700566527911 ~2008
4500974759900194951910 ~2006
4501039139900207827910 ~2006
45010524737201683956911 ~2009
45011119572700667174311 ~2008
45011281613600902528911 ~2008
45011348998102042818311 ~2009
4501385159900277031910 ~2006
45014990813601199264911 ~2008
4501523879900304775910 ~2006
4501529999900305999910 ~2006
4502039831900407966310 ~2006
4502173583900434716710 ~2006
45024806837203969092911 ~2009
4502624771900524954310 ~2006
4502639243900527848710 ~2006
Exponent Prime Factor Digits Year
4502718911900543782310 ~2006
45027444293602195543311 ~2008
4502760263900552052710 ~2006
45030287278105451708711 ~2009
4503184019900636803910 ~2006
45034686172702081170311 ~2008
4503754991900750998310 ~2006
4503764183900752836710 ~2006
45039117077206258731311 ~2009
4504083131900816626310 ~2006
4504101659900820331910 ~2006
4504429571900885914310 ~2006
45044764012702685840711 ~2008
45045441172702726470311 ~2008
4504572491900914498310 ~2006
4504590143900918028710 ~2006
45050614793604049183311 ~2008
45051606372703096382311 ~2008
4505254751901050950310 ~2006
4505429231901085846310 ~2006
4505544383901108876710 ~2006
4505580743901116148710 ~2006
4506315923901263184710 ~2006
4506332459901266491910 ~2006
4506337079901267415910 ~2006
Home
4.724.182 digits
e-mail
25-04-13