Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4986566219997313243910 ~2007
4986637679997327535910 ~2007
49866788212992007292711 ~2008
49871282474987128247111 ~2008
49872314213989785136911 ~2008
498729362911969504709712 ~2009
4987652963997530592710 ~2007
49876767617980282817711 ~2009
4987691363997538272710 ~2007
49878062813990245024911 ~2008
4987888439997577687910 ~2007
49880323812992819428711 ~2008
4988573963997714792710 ~2007
4988580911997716182310 ~2007
4988624243997724848710 ~2007
49886771936984148070311 ~2009
4988828783997765756710 ~2007
4989308651997861730310 ~2007
4989367739997873547910 ~2007
4989691799997938359910 ~2007
49898199434989819943111 ~2008
4989919331997983866310 ~2007
4990122971998024594310 ~2007
499048051310979057128712 ~2009
4990722059998144411910 ~2007
Exponent Prime Factor Digits Year
499072420971866428609712 ~2011
4990780979998156195910 ~2007
49908782936987229610311 ~2009
49909331772994559906311 ~2008
4991246411998249282310 ~2007
4991484383998296876710 ~2007
49921384613993710768911 ~2008
4992473663998494732710 ~2007
4992705251998541050310 ~2007
4992749579998549915910 ~2007
4993155659998631131910 ~2007
4993213691998642738310 ~2007
4993345499998669099910 ~2007
4993404239998680847910 ~2007
49934463896990824944711 ~2009
49934468474993446847111 ~2008
49939945634993994563111 ~2008
49941868612996512116711 ~2008
4994292503998858500710 ~2007
49943419932996605195911 ~2008
4994381531998876306310 ~2007
4994419739998883947910 ~2007
4994428031998885606310 ~2007
4994771531998954306310 ~2007
4995061583999012316710 ~2007
Exponent Prime Factor Digits Year
4995340463999068092710 ~2007
4995669491999133898310 ~2007
49956835994995683599111 ~2008
4995724319999144863910 ~2007
4995755783999151156710 ~2007
4996076003999215200710 ~2007
49960990518992978291911 ~2009
4996128239999225647910 ~2007
4996361459999272291910 ~2007
4996884671999376934310 ~2007
49970045572998202734311 ~2008
4997150531999430106310 ~2007
4997705711999541142310 ~2007
4997780783999556156710 ~2007
4997846879999569375910 ~2007
4997913131999582626310 ~2007
4997927591999585518310 ~2007
4998094859999618971910 ~2007
4998231923999646384710 ~2007
4998246359999649271910 ~2007
49983400012999004000711 ~2008
49986907012999214420711 ~2008
4998993971999798794310 ~2007
49990561037998489764911 ~2009
4999126571999825314310 ~2007
Exponent Prime Factor Digits Year
4999307363999861472710 ~2007
49995390314999539031111 ~2008
49996300013999704000911 ~2008
4999806611999961322310 ~2007
4999869683999973936710 ~2007
4999885211999977042310 ~2007
50001892191000037843911 ~2007
50002944013000176640711 ~2008
50004974991000099499911 ~2007
50006974791000139495911 ~2007
50010136275001013627111 ~2008
50013686391000273727911 ~2007
50015110431000302208711 ~2007
50015291991000305839911 ~2007
50017985631000359712711 ~2007
50018250111000365002311 ~2007
50020440831000408816711 ~2007
50021561835002156183111 ~2008
500220707312005296975312 ~2009
50024490711000489814311 ~2007
50026383231000527664711 ~2007
50027323133001639387911 ~2008
50028016191000560323911 ~2007
50029133391000582667911 ~2007
50030301111000606022311 ~2007
Home
4.724.182 digits
e-mail
25-04-13