Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4002549599800509919910 ~2006
40025812514002581251111 ~2008
40030794773202463581711 ~2007
40032387138807125168711 ~2009
4003607519800721503910 ~2006
40036077372402164642311 ~2007
400364250713612384523912 ~2009
4003755419800751083910 ~2006
4003788023800757604710 ~2006
4003911251800782250310 ~2006
400419793721622668859912 ~2010
4004263859800852771910 ~2006
4004277611800855522310 ~2006
40043660393203492831311 ~2007
4005010283801002056710 ~2006
40050981976408157115311 ~2008
40051370332403082219911 ~2007
4005140603801028120710 ~2006
40053243473204259477711 ~2007
4005329351801065870310 ~2006
4005460691801092138310 ~2006
4005801323801160264710 ~2006
40062657893205012631311 ~2007
4006593611801318722310 ~2006
4006672751801334550310 ~2006
Exponent Prime Factor Digits Year
4006732799801346559910 ~2006
40067575073205406005711 ~2007
4006776419801355283910 ~2006
40069591613205567328911 ~2007
4007040179801408035910 ~2006
4007095451801419090310 ~2006
40072346877213022436711 ~2008
4007330891801466178310 ~2006
4007464511801492902310 ~2006
4007485043801497008710 ~2006
4007689799801537959910 ~2006
4007710331801542066310 ~2006
4007778371801555674310 ~2006
4007884319801576863910 ~2006
4007931731801586346310 ~2006
40080518714008051871111 ~2008
4008077039801615407910 ~2006
40080990132404859407911 ~2007
40084116616413458657711 ~2008
40084428736413508596911 ~2008
40084581413206766512911 ~2007
40085885412405153124711 ~2007
4008659471801731894310 ~2006
400872011312827904361712 ~2009
40087588372405255302311 ~2007
Exponent Prime Factor Digits Year
400879230144898473771312 ~2010
4008808871801761774310 ~2006
4008860039801772007910 ~2006
400901459948108175188112 ~2010
40090729439621775063311 ~2009
4009081319801816263910 ~2006
4009374923801874984710 ~2006
4009397039801879407910 ~2006
4009436771801887354310 ~2006
40094885212405693112711 ~2007
4009660139801932027910 ~2006
400974851332077988104112 ~2010
4009781663801956332710 ~2006
4010058743802011748710 ~2006
4010154971802030994310 ~2006
4010283311802056662310 ~2006
40103462093208276967311 ~2007
4010507951802101590310 ~2006
4010745803802149160710 ~2006
40107656236417224996911 ~2008
4010770139802154027910 ~2006
4010859299802171859910 ~2006
401091814739306997840712 ~2010
4010924279802184855910 ~2006
40112083793208966703311 ~2007
Exponent Prime Factor Digits Year
4011374879802274975910 ~2006
40114820172406889210311 ~2007
4011612743802322548710 ~2006
4011775811802355162310 ~2006
4012105703802421140710 ~2006
40121229772407273786311 ~2007
4012127363802425472710 ~2006
4012467383802493476710 ~2006
4012882799802576559910 ~2006
40128888299630933189711 ~2009
40129203439631008823311 ~2009
4012968023802593604710 ~2006
40132184772407931086311 ~2007
4013543483802708696710 ~2006
40136606572408196394311 ~2007
40138538212408312292711 ~2007
4013864663802772932710 ~2006
4014121703802824340710 ~2006
401441944719269213345712 ~2009
4014562043802912408710 ~2006
40148419132408905147911 ~2007
4014908063802981612710 ~2006
40149291893211943351311 ~2007
4014981923802996384710 ~2006
40152430514015243051111 ~2008
Home
4.828.532 digits
e-mail
25-06-01