Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
56653769031133075380711 ~2007
56656832511133136650311 ~2007
56657008191133140163911 ~2007
56660616173399636970311 ~2008
56663559831133271196711 ~2007
56664239631133284792711 ~2007
56664550733399873043911 ~2008
566657799137399414740712 ~2011
56666290791133325815911 ~2007
56667021831133340436711 ~2007
56671234911133424698311 ~2007
56673319191133466383911 ~2007
56675001831133500036711 ~2007
56675020911133500418311 ~2007
56675461791133509235911 ~2007
56676919791133538395911 ~2007
56679232791133584655911 ~2007
56680139573400808374311 ~2008
56681144511133622890311 ~2007
56682605511133652110311 ~2007
56683828995668382899111 ~2009
566867669318139765417712 ~2010
56688135831133762716711 ~2007
56689296591133785931911 ~2007
56689426333401365579911 ~2008
Exponent Prime Factor Dig. Year
56689962711133799254311 ~2007
56691787431133835748711 ~2007
56691931191133838623911 ~2007
56694306591133886131911 ~2007
56699347373401960842311 ~2008
56701061631134021232711 ~2007
56701734711134034694311 ~2007
56703289275670328927111 ~2009
567035610117011068303112 ~2010
56705120511134102410311 ~2007
56706359337938890306311 ~2009
56706578031134131560711 ~2007
56706950991134139019911 ~2007
56710611831134212236711 ~2007
56711060991134221219911 ~2007
56712974173402778450311 ~2008
56713550511134271010311 ~2007
56716829694537346375311 ~2009
56721634431134432688711 ~2007
56726544831134530896711 ~2007
56727961911134559238311 ~2007
56733585177942701923911 ~2009
56738628675673862867111 ~2009
56740027911134800558311 ~2007
56740862514539269000911 ~2009
Exponent Prime Factor Dig. Year
56741030031134820600711 ~2007
56742964614539437168911 ~2009
56745140333404708419911 ~2008
56745280311134905606311 ~2007
56745337191134906743911 ~2007
56747522631134950452711 ~2007
56750657511135013150311 ~2007
56752919391135058387911 ~2007
567537247731782085871312 ~2011
56754608595675460859111 ~2009
56756901231135138024711 ~2007
56757303231135146064711 ~2007
567580147730649327975912 ~2011
567604847910216887262312 ~2010
56765118533405907111911 ~2008
56766065694541285255311 ~2009
56766904494541352359311 ~2009
567673294913624159077712 ~2010
56767484031135349680711 ~2007
56767770831135355416711 ~2007
56768346231135366924711 ~2007
56769332991135386659911 ~2007
567724286314760831443912 ~2010
56773112391135462247911 ~2007
56774460831135489216711 ~2007
Exponent Prime Factor Dig. Year
56775112431135502248711 ~2007
567762889713626309352912 ~2010
56777071733406624303911 ~2008
56780048031135600960711 ~2007
567860732313628657575312 ~2010
56786373231135727464711 ~2007
567865319313628767663312 ~2010
56789968013407398080711 ~2008
567932387913630377309712 ~2010
56795009511135900190311 ~2007
56795664231135913284711 ~2007
56796513714543721096911 ~2009
56798532973407911978311 ~2008
56800115391136002307911 ~2007
56803841031136076820711 ~2007
56804485311136089706311 ~2007
56805676431136113528711 ~2007
56807406773408444406311 ~2008
56811121911136222438311 ~2007
56813063991136261279911 ~2007
56815946511136318930311 ~2007
56818500711136370014311 ~2007
56819267511136385350311 ~2007
56822977791136459555911 ~2007
56827707591136554151911 ~2007
Home
4.724.182 digits
e-mail
25-04-13