Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
64793409111295868182311 ~2008
64794048591295880971911 ~2008
64795253991295905079911 ~2008
64795702311295914046311 ~2008
64796146791295922935911 ~2008
64796598591295931971911 ~2008
64798212676479821267111 ~2009
64799291991295985839911 ~2008
64803677031296073540711 ~2008
648050249911664904498312 ~2010
64805913111296118262311 ~2008
64806530991296130619911 ~2008
64807225795184578063311 ~2009
64807579311296151586311 ~2008
64808260911296165218311 ~2008
64809911173888594670311 ~2009
64810049031296200980711 ~2008
64811397111296227942311 ~2008
64814038431296280768711 ~2008
64816424391296328487911 ~2008
64817016591296340331911 ~2008
64817346831296346936711 ~2008
64818567231296371344711 ~2008
648228764915557490357712 ~2010
64824646791296492935911 ~2008
Exponent Prime Factor Dig. Year
64824696415185975712911 ~2009
64828851591296577031911 ~2008
64829107615186328608911 ~2009
648291654710372666475312 ~2010
64829291511296585830311 ~2008
64833593813890015628711 ~2009
64834818831296696376711 ~2008
64837679031296753580711 ~2008
64837951333890277079911 ~2009
64844802831296896056711 ~2008
64846660499078532468711 ~2010
648498242920751943772912 ~2011
64851022431297020448711 ~2008
64851722511297034450311 ~2008
64852716711297054334311 ~2008
64853125911297062518311 ~2008
64855468911297109378311 ~2008
64857233511297144670311 ~2008
64858788231297175764711 ~2008
648666532711675997588712 ~2010
64868344075189467525711 ~2009
64869825591297396511911 ~2008
64876823391297536467911 ~2008
64877606631297552132711 ~2008
64879586995190366959311 ~2009
Exponent Prime Factor Dig. Year
64881072591297621451911 ~2008
64883605911297672118311 ~2008
64885943511297718870311 ~2008
64886825031297736500711 ~2008
64887662596488766259111 ~2009
64888266711297765334311 ~2008
64891338831297826776711 ~2008
64895023911297900478311 ~2008
64902867111298057342311 ~2008
64903480191298069603911 ~2008
64904500911298090018311 ~2008
64908093591298161871911 ~2008
64908147231298162944711 ~2008
64909691391298193827911 ~2008
649101576129858672500712 ~2011
64911430191298228603911 ~2008
64911651173894699070311 ~2009
64913101911298262038311 ~2008
64913886711298277734311 ~2008
64914584815193166784911 ~2009
64916353431298327068711 ~2008
64917813111298356262311 ~2008
64917820911298356418311 ~2008
64920354013895221240711 ~2009
649216513310387464212912 ~2010
Exponent Prime Factor Dig. Year
64922361231298447224711 ~2008
64926236533895574191911 ~2009
64927828675194226293711 ~2009
64933420213896005212711 ~2009
64933957933896037475911 ~2009
64935616311298712326311 ~2008
64937251911298745038311 ~2008
64937676115195014088911 ~2009
64942038231298840764711 ~2008
64943486991298869739911 ~2008
64944001375195520109711 ~2009
64945341591298906831911 ~2008
64946676591298933531911 ~2008
64947774831298955496711 ~2008
64948325173896899510311 ~2009
64949331111298986622311 ~2008
64950119511299002390311 ~2008
649523065771447537227112 ~2012
64954108191299082163911 ~2008
64957200733897432043911 ~2009
64957673631299153472711 ~2008
64959250431299185008711 ~2008
64962113031299242260711 ~2008
64963228013897793680711 ~2009
64965654013897939240711 ~2009
Home
4.724.182 digits
e-mail
25-04-13