Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4195467911839093582310 ~2006
4195596263839119252710 ~2006
41957579397552364290311 ~2008
4195972139839194427910 ~2006
4196056031839211206310 ~2006
41968601412518116084711 ~2007
41969000693357520055311 ~2008
4196918051839383610310 ~2006
4197075203839415040710 ~2006
4197236423839447284710 ~2006
41972519117555053439911 ~2009
4197378023839475604710 ~2006
4197424139839484827910 ~2006
4197553523839510704710 ~2006
4197695171839539034310 ~2006
4197748259839549651910 ~2006
4197785519839557103910 ~2006
4197846203839569240710 ~2006
41981226893358498151311 ~2008
41981988612518919316711 ~2007
4198350791839670158310 ~2006
4198552439839710487910 ~2006
4198730351839746070310 ~2006
4198866179839773235910 ~2006
4199047871839809574310 ~2006
Exponent Prime Factor Digits Year
4199159831839831966310 ~2006
4199415491839883098310 ~2006
4199488679839897735910 ~2006
4199660243839932048710 ~2006
42000404993360032399311 ~2008
42001431612520085896711 ~2007
42003360532520201631911 ~2007
4200419903840083980710 ~2006
42005874499241292387911 ~2009
4200685259840137051910 ~2006
4200718871840143774310 ~2006
4200719051840143810310 ~2006
4200877379840175475910 ~2006
420090871110922362648712 ~2009
4201095779840219155910 ~2006
4201190699840238139910 ~2006
4201195931840239186310 ~2006
4201499063840299812710 ~2006
4201505459840301091910 ~2006
4201507883840301576710 ~2006
42016967717563054187911 ~2009
4201774631840354926310 ~2006
4201777631840355526310 ~2006
4201894439840378887910 ~2006
42020314874202031487111 ~2008
Exponent Prime Factor Digits Year
4202228399840445679910 ~2006
42023300873361864069711 ~2008
4202759579840551915910 ~2006
42029097194202909719111 ~2008
4203057671840611534310 ~2006
4203555491840711098310 ~2006
4203844979840768995910 ~2006
4204232843840846568710 ~2006
420442470116817698804112 ~2009
4204520399840904079910 ~2006
42046916572522814994311 ~2007
42048210532522892631911 ~2007
4204883531840976706310 ~2006
4204922279840984455910 ~2006
4204951799840990359910 ~2006
4205065979841013195910 ~2006
4205353931841070786310 ~2006
42057108893364568711311 ~2008
420580785710093938856912 ~2009
4205856911841171382310 ~2006
4206047063841209412710 ~2006
4206170123841234024710 ~2006
4206280943841256188710 ~2006
4206370739841274147910 ~2006
4206374723841274944710 ~2006
Exponent Prime Factor Digits Year
4206462083841292416710 ~2006
42065425132523925507911 ~2007
420658640913461076508912 ~2009
4206605471841321094310 ~2006
4206795011841359002310 ~2006
4207119263841423852710 ~2006
4207354919841470983910 ~2006
4207479791841495958310 ~2006
42077532473366202597711 ~2008
42082835873366626869711 ~2008
4208414459841682891910 ~2006
42086091295892052780711 ~2008
420890569319360966187912 ~2010
42089518212525371092711 ~2007
42090278277576250088711 ~2009
4209129923841825984710 ~2006
4209399539841879907910 ~2006
420947637134517706242312 ~2010
4209549203841909840710 ~2006
4209675059841935011910 ~2006
4209797219841959443910 ~2006
4209993323841998664710 ~2006
4209997139841999427910 ~2006
4210195499842039099910 ~2006
42102751973368220157711 ~2008
Home
4.933.056 digits
e-mail
25-07-20