Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4262539763852507952710 ~2006
42626751473410140117711 ~2008
4262677343852535468710 ~2006
42628476612557708596711 ~2007
4262988071852597614310 ~2006
4263211343852642268710 ~2006
4263314771852662954310 ~2006
42634676997674241858311 ~2009
42634787812558087268711 ~2007
4263685619852737123910 ~2006
426379153111085857980712 ~2009
4263817163852763432710 ~2006
4264485383852897076710 ~2006
4264532231852906446310 ~2006
42646549397676378890311 ~2009
4264661399852932279910 ~2006
4265204291853040858310 ~2006
4265354231853070846310 ~2006
4265654303853130860710 ~2006
426576204117063048164112 ~2009
426577966711091027134312 ~2009
4265783363853156672710 ~2006
42658006572559480394311 ~2007
4265981663853196332710 ~2006
4266313283853262656710 ~2006
Exponent Prime Factor Digits Year
4266412679853282535910 ~2006
4266535043853307008710 ~2006
4266598079853319615910 ~2006
4266614123853322824710 ~2006
4266671159853334231910 ~2006
4266823163853364632710 ~2006
4266979631853395926310 ~2006
4267243679853448735910 ~2006
4267346459853469291910 ~2006
4267625003853525000710 ~2006
42676360332560581619911 ~2007
4267659611853531922310 ~2006
42676742513414139400911 ~2008
4267708583853541716710 ~2006
426774878916217445398312 ~2009
4267757699853551539910 ~2006
4267972211853594442310 ~2006
4268097731853619546310 ~2006
4268194223853638844710 ~2006
42682814873414625189711 ~2008
42685057972561103478311 ~2007
4268507783853701556710 ~2006
4268569979853713995910 ~2006
4268686811853737362310 ~2006
4269031703853806340710 ~2006
Exponent Prime Factor Digits Year
42691468876830635019311 ~2008
4269349319853869863910 ~2006
42694523474269452347111 ~2008
4269479663853895932710 ~2006
4269486503853897300710 ~2006
4269949283853989856710 ~2006
427001545716226058736712 ~2009
42700879812562052788711 ~2007
42700978276832156523311 ~2008
4270138331854027666310 ~2006
42701747513416139800911 ~2008
4270178903854035780710 ~2006
427023374313664747977712 ~2009
427059532112811785963112 ~2009
4270840103854168020710 ~2006
4271063999854212799910 ~2006
427106722314521628558312 ~2009
4271099543854219908710 ~2006
42714310932562858655911 ~2007
4271475311854295062310 ~2006
4271649443854329888710 ~2006
4271654459854330891910 ~2006
42717534772563052086311 ~2007
4271901923854380384710 ~2006
42719862972563191778311 ~2007
Exponent Prime Factor Digits Year
42719914972563194898311 ~2007
4272145463854429092710 ~2006
4272175679854435135910 ~2006
42722807572563368454311 ~2007
42723926812563435608711 ~2007
427253083710254074008912 ~2009
42726391812563583508711 ~2007
4272677819854535563910 ~2006
42727213572563632814311 ~2007
42728718773418297501711 ~2008
4272920111854584022310 ~2006
4273031123854606224710 ~2006
42731036693418482935311 ~2008
4273168283854633656710 ~2006
42731856012563911360711 ~2007
427332145710255971496912 ~2009
42734755994273475599111 ~2008
4273563719854712743910 ~2006
4273575083854715016710 ~2006
4273597739854719547910 ~2006
42736140412564168424711 ~2007
427369197117094767884112 ~2009
427376540348720925594312 ~2011
427376702310257040855312 ~2009
42738346373419067709711 ~2008
Home
4.933.056 digits
e-mail
25-07-20