Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
55417929111108358582311 ~2007
55418170911108363418311 ~2007
55418791278867006603311 ~2009
55421413995542141399111 ~2009
55422324973325339498311 ~2008
554250120713302002896912 ~2010
55425055431108501108711 ~2007
55425774591108515491911 ~2007
554273544122170941764112 ~2010
55427410191108548203911 ~2007
55427656911108553138311 ~2007
55428167031108563340711 ~2007
55428303831108566076711 ~2007
55428714177760019983911 ~2009
55430573631108611472711 ~2007
55431362333325881739911 ~2008
55438796511108775930311 ~2007
55439170911108783418311 ~2007
554398812718849559631912 ~2010
55442550111108851002311 ~2007
55443798711108875974311 ~2007
55445504631108910092711 ~2007
55447416591108948331911 ~2007
55449588231108991764711 ~2007
55450462191109009243911 ~2007
Exponent Prime Factor Dig. Year
55450540191109010803911 ~2007
554508575927725428795112 ~2011
55453265118872522417711 ~2009
55454079973327244798311 ~2008
55454491911109089838311 ~2007
55455022191109100443911 ~2007
55455334431109106688711 ~2007
55459843431109196868711 ~2007
55461969831109239396711 ~2007
55462566435546256643111 ~2009
55462983111109259662311 ~2007
55463114991109262299911 ~2007
554635996943261607758312 ~2011
55463646438874183428911 ~2009
55464293631109285872711 ~2007
55465970991109319419911 ~2007
55466099511109321990311 ~2007
55467843711109356874311 ~2007
55468678578874988571311 ~2009
55469109831109382196711 ~2007
55469154594437532367311 ~2009
55470984111109419682311 ~2007
55471408213328284492711 ~2008
55474402431109488048711 ~2007
55475600991109512019911 ~2007
Exponent Prime Factor Dig. Year
55475993814438079504911 ~2009
55482088431109641768711 ~2007
55484862111109697242311 ~2007
55493171773329590306311 ~2008
55495353195549535319111 ~2009
55495428111109908562311 ~2007
555012215939960879544912 ~2011
55501439394440115151311 ~2009
55502134973330128098311 ~2008
55504301697770602236711 ~2009
55504571031110091420711 ~2007
55505874915550587491111 ~2009
555064640339964654101712 ~2011
55508847111110176942311 ~2007
55509384231110187684711 ~2007
55510162213330609732711 ~2008
55511210991110224219911 ~2007
55511927631110238552711 ~2007
55513744431110274888711 ~2007
55517333031110346660711 ~2007
55517813031110356260711 ~2007
55523473191110469463911 ~2007
55524381591110487631911 ~2007
55525369191110507383911 ~2007
55527463791110549275911 ~2007
Exponent Prime Factor Dig. Year
55529988973331799338311 ~2008
55530799431110615988711 ~2007
55534069733332044183911 ~2008
55538631714443090536911 ~2009
55540991511110819830311 ~2007
555414450722216578028112 ~2010
55541914911110838298311 ~2007
55544545791110890915911 ~2007
55546010991110920219911 ~2007
55547691533332861491911 ~2008
55548074214443845936911 ~2009
55552026413333121584711 ~2008
55553538711111070774311 ~2007
55553671431111073428711 ~2007
55554087111111081742311 ~2007
555557248916666717467112 ~2010
55558083111111161662311 ~2007
55560918111111218362311 ~2007
55561949773333716986311 ~2008
555638046112224037014312 ~2010
555651713913335641133712 ~2010
55566777711111335554311 ~2007
55567181031111343620711 ~2007
55567349514445387960911 ~2009
55568161191111363223911 ~2007
Home
4.828.532 digits
e-mail
25-06-01